, Volume 135, Issue 1, pp 103–114 | Cite as

Ecomorphological diversification in reef fish of the genus Abudefduf (Percifomes, Pomacentridae)

  • Rosalía Aguilar-Medrano
  • Paul H. Barber
Original Paper


Coral reefs are home to the most diverse fish assemblages on earth. This high diversity has been hypothesized to partially result from fine-scale niche partitioning of resources. Because niche partitioning might be facilitated by phenotypic diversity, analysis of the morphological variation in an evolutionary context can contribute to our understanding of the speciation and diversification of reef fish. Damselfishes (Pomacentridae) are an extremely diverse group of reef fishes, and Abudefduf genus is one of the youngest clades of this family. Abudefduf is basal clade group benthic feeders, feeding on algae, small benthic invertebrates and zooplankton. In contrast, more derived clades feed primarily on zooplankton. In this study, we examine the relation between morphological and ecological variation to determine the main forces driving diversification in Abudefduf. Results support clear ecomorphological segregation among basal and derived clades, indicating evolution from benthic feeders to zooplanktivorous feeders, suggesting that the shift to a new trophic niche was an important event driving diversification in Abudefduf, and also evidenced by the presence of morphological traits that represent specialized adaptations to chase plankton in the water column. Our analysis demonstrates the utility of morphological and ecological studies to understand the diversification process of reef fish.


Reef fish Diversification Ecology Morphology Pomacentridae 



Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico and University of California Institute for Mexico and the United States (UC MEXUS), USA, funded the postdoctoral research of R. Aguilar-Medrano. We thank Lucia Campos Dávila (CIBNOR), Eduardo F. Balart (CIBNOR), H.J. Walkers (SIO), Philip A. Hastings (SIO), Victor Cota Gómez (CICIMAR), José De La Cruz Agüero (CICIMAR) and Rick Feeney (LACM) for their help with the museum collections.

Supplementary material

435_2015_291_MOESM1_ESM.doc (35 kb)
Supplementary material 1 (DOC 35 kb)


  1. Aguilar-Medrano R (2013) Body shape evolution of Chromis and Azurina species (Percifomes, Pomacentridae) of the eastern Pacific. An Biol 63:217–232CrossRefGoogle Scholar
  2. Aguilar-Medrano R, Frédérich B, De Luna E, Balart EF (2011) Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Biol J Linn Soc 102:593–613CrossRefGoogle Scholar
  3. Aguilar-Medrano R, Frédérich B, Balart EF, De Luna E (2013) Diversification of the pectoral fin shape in damselfishes (Perciformes, Pomacentridae) of the Eastern Pacific. Zoomorphology 132:197–213CrossRefGoogle Scholar
  4. Allen GR (1991) Damselfishes of the world. Publication of natural history and pets book. Mergus, MelleGoogle Scholar
  5. Allen GR, Erdmann MV (2012) Reef fishes of the East Indies, vol 1–3. Tropical Reef Research, Universitiy of Hawaii Press, Perth, AustraliaGoogle Scholar
  6. Bartol IK, Gharib M, Weihs D, Webb PW, Hove JR, Gordon MS (2003) Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae). J Exp Biol 206(4):725–744CrossRefPubMedGoogle Scholar
  7. Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral Reef Fishes. Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 5–32CrossRefGoogle Scholar
  8. Bellwood DR, Goatley CHR, Brandl SJ, Bellwood O (2014) Fifty million years of herbivory on coral reefs: Fossils, fish and functional innovations. Proc R Soc B 281:1781CrossRefGoogle Scholar
  9. Bookstein FL (1991) Morphometric tools for landmark data—geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  10. Caroll RL (1987) Vertebrate paleontology and evolution. Freeman Press, New YorkGoogle Scholar
  11. Cervigón F (1993) Los peces marinos de Venezuela, vol 2. Fundación Científica Los Roques, Caracas, VenezuelaGoogle Scholar
  12. Choat JH, Bellwood DR (1991) Reef fishes: their history and evolution. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 39–66CrossRefGoogle Scholar
  13. Cooper WJ, Smith LL, Westneat MW (2009) Exploring the radiation of a diverse reef fish family: phylogenetics of the damselfishes (Pomacentridae), with new classifications based on molecular analyses of all genera. Mol Phyl Evol 52:1–16CrossRefGoogle Scholar
  14. Coughlin DJ, Strickler JR (1990) Zooplankton capture by a coral reef fish: an adaptive response to evasive prey. Environ Biol Fish 29:35–42CrossRefGoogle Scholar
  15. Davis JC (1986) Statistics and data analysis in geology. Wiley, New YorkGoogle Scholar
  16. Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221Google Scholar
  17. Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integr Comp Biol 42:243–257CrossRefPubMedGoogle Scholar
  18. Drucker EG, Lauder GV (2005) Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J Exp Biol 208:4479–4494CrossRefPubMedGoogle Scholar
  19. Emery AR (1973) Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull Mar Sci 23:649–770Google Scholar
  20. Eschmeyer WN (2015) Catalog of fishes: genera, species, references ( Accessed March 2015
  21. Fagerstrom JA (1987) The evolution of the reef communities. Wiley, New YorkGoogle Scholar
  22. Fishelson L (1970) Behavior and ecology of one population of Abudefduf saxatilis (Pomacentridae, Teleostei) at Eilat (Red Sea). Anim Behav 18:225–237CrossRefGoogle Scholar
  23. Frédérich B, Pilet A, Parmentier E, Vandewalle P (2008) Comparative trophic morphology in eight species of damselfishes (Pomacentridae). J Morph 269:175–188CrossRefPubMedGoogle Scholar
  24. Frédérich B, Fabri G, Lepoint G, Vandewalle P, Parmentier E (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Recif of Toliara, Madagascar. Ichtiol Res 56:10–17CrossRefGoogle Scholar
  25. Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181(1):94–113CrossRefPubMedGoogle Scholar
  26. Froese R, Pauly D (2015) FishBase: concepts, design and data sources. ICLARM, Los Baños, Laguna. Accessed March 2015
  27. Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26(2):217–228CrossRefGoogle Scholar
  28. Fulton CJ, Johansen JL, Steffensen JF (2013) Energetic extremes in aquatic locomotion by coral reef fishes. PlosOne. doi: 10.1371/journal.pone.0054033 Google Scholar
  29. Goloboff PA, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  30. Gosline WA (1971) Functional morphology and classification of teleostean fishes. University Press of Hawaii, HonoluluGoogle Scholar
  31. Greenfield DW, Woods LP (1980) Review of the deep-bodied species of Chromis (Pisces: Pomacentridae) from the eastern Pacific, with descriptions of three new species. Copeia 1980:626–641CrossRefGoogle Scholar
  32. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palentological Statistics software package for education and data analysis. Palaeontolia Electronica 4(1):9.
  33. Heatwole SJ, Fulton CJ (2013) Behavioural flexibility in coral reef fishes responding to a rapidly changing environment. Mar Biol 160:677–689CrossRefGoogle Scholar
  34. Hobson ES (1975) Feeding patterns among tropical reef fishes. Am Sci 63:382–392Google Scholar
  35. Hobson ES (1991) Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 69–95CrossRefGoogle Scholar
  36. Hobson ES, Chess JR (1978) Trophic relationships among fishes and plankton in the lagoon at Enewetak Atoll, Marshall Islands. Fish Bull 76:567–598Google Scholar
  37. Humann P (1994) Reef fish identification, 2nd edn. New World Pubs Inc, Florida, Caribbean, BahamasGoogle Scholar
  38. Kuiter RH and Tonozuka T (2001) Pictorial guide to Indonesian reef fishes. Part 3. Jawfishes, Sunfishes, Opistognathidae, Molidae. Zoonetics, Australia, pp 623–893Google Scholar
  39. Liem KF (1993) Ecomorphology of the teleostean skull. In: Hanken J, Hall BH (eds) The skull: functional and evolutionary mechanisms, vol 3., University of Chicago PressChicago, IL, pp 423–452Google Scholar
  40. Lieske E, Myers R (1994) Collins pocket guide. Coral reef fishes. Indo‐Pacific and Caribbean including the Red Sea. Haper Collins Publishers Google Scholar
  41. Lighthill J (1993) Estimates of pressure differences across the head of a swimming clupeid fish. Philos Trans R Soc B 341:129–140CrossRefGoogle Scholar
  42. Liske E, Myers R (2001) Coral reef fishes: Indo-Pacific and Caribbean. The University of California, CaliforniaGoogle Scholar
  43. Losos JB (1990) A phylogenetic analysis of character displacement in Caribbean Anolis lizards. Evolution 44:558–569CrossRefGoogle Scholar
  44. Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199CrossRefPubMedGoogle Scholar
  45. Motta PJ, Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth J Zool 42(2–3):400–415Google Scholar
  46. Motta PJ, Norton SF, Luczkovich JJ (1995) Perspectives on the ecomorphology of bony fishes. Environ Biol Fish 44(1–3):11–20CrossRefGoogle Scholar
  47. Norton SF, Luczkovich JJ, Motta PJ (1995) The role of ecomorphological studies in the comparative biology of fishes. Environ Biol Fish 44(1–3):287–304CrossRefGoogle Scholar
  48. Pavlov DS, Kasumyan AO (2002) Feeding diversity in fishes: trophic classification of fish. J. Ichthyol 2:137–159Google Scholar
  49. Quenouille B, Bermingham E, Planes S (2004) Molecular systematics of the damselfishes (Teleostei: Pomacentridae): Bayesian phylogenetic analyses of mitochondrial and nuclear DNA sequences. Mol Phyl Evol 31:62–68CrossRefGoogle Scholar
  50. Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trap Oceanogr 5:665–847Google Scholar
  51. Randall JE, Earle JL (1999) Abudefduf conformis and Plectroglyphidodon sagmarius, two new damselfishes (Pomacentridae) from the Marquesas Islands. Cybium 23(4):333–343Google Scholar
  52. Robertson DR, Allen GR (2015) Peces Costeros del Pacífico Oriental Tropical: sistema de Información en línea. Versión 2.0 Instituto Smithsonian de Investigaciones tropicales, Balboa, República de PanamáGoogle Scholar
  53. Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928CrossRefPubMedGoogle Scholar
  54. Rohlf FJ (1993) Relative warps analysis and an example of its application to mosquito wings. In: Marcus LF, Bello E, Garcia-Valdecasas A (eds) Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 131–159Google Scholar
  55. Rohlf FJ, Slice D (1990) Extension of the Procrustes method for the optimal superposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  56. Safran P, Omori M (1990) Some ecological observations on fishes associated with drifting seaweed off Tohoku coast, Japan. Mar Biol 105:395–402CrossRefGoogle Scholar
  57. Schaeffer B, Rosen DE (1961) Major adaptive levels in the evolution of the Actinopterygian feeding mechanism. Am Zool 1:187–204CrossRefGoogle Scholar
  58. Schmitz L, Wainwright PC (2010) Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. Coral Reefs 30:415–428CrossRefGoogle Scholar
  59. Thompson DA (1917) On growth and form. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  60. Wainwright PC (1994) Functional morphology as a tool in ecological research. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 42–59Google Scholar
  61. Wainwright PC, Bellwood DR (2002) Ecomorphology of feeding in coral reef fishes. In: Sale PF (ed) Coral reef fishes. Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 33–55CrossRefGoogle Scholar
  62. Wood R (1999) Reef evolution. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Instituto de Ecología AplicadaUniversidad Autónoma de TamaulipasCiudad VictoriaMexico

Personalised recommendations