, Volume 134, Issue 1, pp 79–91 | Cite as

The intermediate sperm type and genitalia of Zorotypus shannoni Gurney: evidence supporting infraordinal lineages in Zoraptera (Insecta)

  • Romano Dallai
  • Marco Gottardo
  • David Mercati
  • José Albertino Rafael
  • Ryuichiro Machida
  • Yuta Mashimo
  • Yoko Matsumura
  • Rolf Georg Beutel
Original Paper


The sperm ultrastructure and the male and female genital apparatus of Zorotypus shannoni were examined and documented in detail, mainly using transmission electron microscopy micrographs. The findings suggest an evolutionary trend shared with Z. hubbardi and Z. impolitus. The three species are characterized by enlarged mitochondrial derivatives and related modifications. Giant sperm are probably a synapomorphy of Z. hubbardi and Z. impolitus, whereas an intermediate condition of this feature is found in Z. shannoni. The monophyletic origin of Z. caudelli, Z. magnicaudelli, Z. huxleyi and Z. weidneri is suggested by characteristically modified axonemes. The presence of extra-acrosomal material is also an unusual feature for Zoraptera, but this condition also occurs in the majority of polyneopteran groups. The long and convoluted female spermathecal duct with secretory and duct-forming cells is a constant feature in Zoraptera. The enlarged seminal receptacle suggests an evolutionary link between the male genital structures and the sperm size on one hand, and the size of the female spermatheca on the other. The small and otherwise uniform group Zoraptera exhibits a remarkable variation of sperm types and genital structures, suggesting the impact of different types of selection. It is likely that cryptic female choice plays a major role in shaping the genital apparatus.


Polyneoptera Spermatozoa Ultrastructure Transmission electron microscopy (TEM) Phylogeny 



We thank J. T. Câmera and F. F. Xavier Filho for their help in collecting material. YM was supported by JSP Postdoctoral Fellowships for research abroad.


  1. Baccetti B (1987) Spermatozoa and phylogeny in orthopteroid insects. In: Baccetti B (ed) Evolutionary Biology of Orthopteroid Insects. Horwood, Chichester, pp 12–112Google Scholar
  2. Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthrop Syst Phylog 64:3–25Google Scholar
  3. Blanke A, Wipfler B, Letsch H, Koch M, Beckmann F, Beutel R, Misof B (2012) Revival of Palaeoptera—head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta). Cladistics 28:560–581CrossRefGoogle Scholar
  4. Choe JC (1997) The evolution of mating systems in the Zoraptera: mating variations and sexual conflicts. In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 130–145CrossRefGoogle Scholar
  5. Dallai R (2014) Overview on spermatogenesis and sperm structure of Hexapoda. Arthropod Struct Dev 43:257–290CrossRefPubMedGoogle Scholar
  6. Dallai R, Frati F, Lupetti P, Adis J (2003) Sperm ultrastructure of Mantophasma zephyra (Insecta, Mantophasmatodea). Zoomorphology 122:67–76CrossRefGoogle Scholar
  7. Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG (2011) The male reproductive system of Zorotypus caudelli Karny (Zoraptera): Sperm structure and spermiogenesis. Arthropod Struct Dev 40:531–547CrossRefPubMedGoogle Scholar
  8. Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG (2012a) The fine structure of the female reproductive system of Zorotypus caudelli Karny (Zoraptera). Arthropod Struct Dev 41:51–63CrossRefPubMedGoogle Scholar
  9. Dallai R, Mercati D, Gottardo M, Dossey AT, Machida R, Mashimo Y, Beutel RG (2012b) The male and female reproductive systems of Zorotypus hubbardi Caudell, 1918 (Zoraptera). Arthropod Struct Dev 41:337–359CrossRefPubMedGoogle Scholar
  10. Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Beutel RG (2013) Divergent mating patterns and a unique mode of external sperm transfer in Zoraptera: an enigmatic group of pterygote insects. Naturwissenschaften 100:581–594CrossRefPubMedGoogle Scholar
  11. Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Beutel RG (2014a) Giant spermatozoa and a huge spermatheca: A case of coevolution of male and female reproductive organs in the ground louse Zorotypus impolitus (Insecta, Zoraptera). Arthropod Struct Dev 43:135–151CrossRefPubMedGoogle Scholar
  12. Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Rafael JA, Beutel RG (2014b) Comparative morphology of spermatozoa and reproductive systems of zorapteran species from different world regions (Insecta, Zoraptera). Arthropod Struct Dev 43:371–383Google Scholar
  13. Dybas LK, Dybas HS (1981) Coadaptation and taxonomic differentiation of sperm and spermathecae in featherwing beetles. Evolution 35:168–174CrossRefGoogle Scholar
  14. Eberhard WG (1996) Female Control: Sexual Selection by Cryptic Female Choice. Princeton University Press, Princeton, New JerseyGoogle Scholar
  15. Fausto AM, Belardinelli M, Fochetti R, Mazzini M (2001) Comparative spermatology in Plecoptera (Insecta): an ultrastructural investigation on four species. Arthropod Struct Dev 30:55–62CrossRefPubMedGoogle Scholar
  16. Gottardo M, Mercati D, Dallai R (2012) The spermatogenesis and sperm structure of Timema poppensis (Insecta: Phasmatodea). Zoomorphology 131:209–223CrossRefGoogle Scholar
  17. Grimaldi DA, Engel MS (2005) Evolution of the Insects. Cambridge University Press, CambridgeGoogle Scholar
  18. Gurney AB (1938) A synopsis of the order Zoraptera, with notes on the biology of Zorotypus hubbardi Caudell. Proc Entomol Soc Wash 40:57–87Google Scholar
  19. Hennig W (1969) Die Stammesgeschichte der Insekten. Waldemar Kramer, Frankfurt am MainGoogle Scholar
  20. Higginson DM, Miller KB, Segraves KA, Pitnick S (2012) Female reproductive tract form drives the evolution of complex sperm morphology. Proc Natl Acad Sci USA 109:4338–4543CrossRefGoogle Scholar
  21. Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z-H (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylog Evol 58:169–180CrossRefGoogle Scholar
  22. Letsch H, Simon S (2013) Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Syst Entomol 38:783–793CrossRefGoogle Scholar
  23. Mashimo Y, Machida R, Dallai R, Gottardo M, Mercati D, Beutel RG (2011) Egg structure of Zorotypus caudelli Karny (Insecta, Zoraptera, Zorotypidae). Tissue Cell 43:230–237CrossRefPubMedGoogle Scholar
  24. Mashimo Y, Yoshizawa K, Engel MS, Ghani IAB, Dallai R, Beutel RG, Machida R (2013) Zorotypus in Peninsular Malaysia (Zoraptera: Zorotypidae), with the description of three new species. Zootaxa 3717:498–514CrossRefGoogle Scholar
  25. Mashimo Y, Beutel RG, Dallai R, Lee C-Y, Machida R (2014a) Embryonic development of Zoraptera with special reference to external morphology, and its phylogenetic implications (Insecta). J Morphol 275:295–312CrossRefPubMedGoogle Scholar
  26. Mashimo Y, Matsumura Y, Machida R, Dallai R, Gottardo M, Yoshizawa K, Friedrich F, Wipfler B, Beutel RG (2014b) 100 years Zoraptera–a phantom in insect evolution and the history of its investigation. Insect Syst Evol. doi: 10.1163/1876312X-45012110
  27. Matsumura Y, Yoshizawa K, Machida R, Mashimo Y, Dallai R, Gottardo M, Kleinteich T, Michels J, Gorb SN, Beutel RG (2014) Two intromittent organs in Zorotypus caudelli (Insecta, Zoraptera): a paradox coexistence of an extremely long tube and a large spermatophore. Biol J Linnean Soc 112:40–54CrossRefGoogle Scholar
  28. Miller GT, Pitnick S (2002) Sperm-female coevolution in Drosophila. Science 298:1230–1233CrossRefPubMedGoogle Scholar
  29. Miller GT, Pitnick S (2003) Functional significance of seminal receptacle length in Drosophila melanogaster. J Evol Biol 16:114–126CrossRefPubMedGoogle Scholar
  30. Minder AM, Hosken DJ, Ward PI (2005) Co-evolution of male and female reproductive characters across the Scathophagidae (Diptera). J Evol Biol 18:60–69CrossRefPubMedGoogle Scholar
  31. Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A (2007) Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. Zoology 110:409–429CrossRefPubMedGoogle Scholar
  32. New TR (1978) Notes on Neotropical Zoraptera, with descriptions of two new species. Syst Entomol 3:361–370CrossRefGoogle Scholar
  33. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Ann Rev Entomol 19:61–80CrossRefGoogle Scholar
  34. Pohl H (2000) Die Primärlarven der Fächerflügler: Evolutionäre Trends (Insecta, Strepsiptera). Kaupia 10:1–144Google Scholar
  35. Quennedey A (1998) Insect epidermal gland cells: ultrastructure and morphogenesis. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol. 11a: Insecta. Wiley-Liss Inc., Hoboken, pp 177–207Google Scholar
  36. Silvestri F (1913) Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di Zoologia Generale e Agraria, Portici 7:193–209Google Scholar
  37. Simon S, Narechania A, DeSalle R, Hadrys H (2012) Insect Phylogenomics: Exploring the source of incongruence using new transcriptomic data. Genome Biol Evol 4:1259–1309CrossRefGoogle Scholar
  38. Terry MD, Whiting MF (2005) Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 21:240–257CrossRefGoogle Scholar
  39. Wang Y, Engel MS, Rafael JA, Dang K, Wu H, Wang Y, Xie Q, Bu W (2013) A unique box in 28S rRNA is shared by the enigmatic insect order Zoraptera and Dictyoptera. PLoS One 8(1):e53679CrossRefPubMedCentralPubMedGoogle Scholar
  40. Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169CrossRefGoogle Scholar
  41. Willmann R (2005) Phylogenese und Systemk der Insecta. Lehrbuch der Speziellen Zoologie, begründet von A. Kaestner, 2. Aufl. Bd. I. In: Dathe HH (ed) Wirbellose Tiere. 5. Teil: Insecta. Spektrum, Gustav Fischer, Heidelberg, Berlin, p 1–65Google Scholar
  42. Wipfler B, Pass G (2014) Antennal heart morphology supports relationship of Zoraptera with polyneopteran insects. Syst Entomol 39:800–805Google Scholar
  43. Yoshizawa K (2011) Monophyletic Polyneoptera recovered by wing base structure. Syst Entomol 36:377–394CrossRefGoogle Scholar
  44. Yoshizawa K, Johnson KP (2005) Aligned 18S for Zoraptera (Insecta): Phylogenetic position and molecular evolution. Mol Phylog Evol 37:572–580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Romano Dallai
    • 1
  • Marco Gottardo
    • 1
  • David Mercati
    • 1
  • José Albertino Rafael
    • 2
  • Ryuichiro Machida
    • 3
  • Yuta Mashimo
    • 3
  • Yoko Matsumura
    • 4
  • Rolf Georg Beutel
    • 4
  1. 1.Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Instituto Nacional de Pesquisas da AmazoniaManausBrazil
  3. 3.Sugadaira Montane Research CenterUniversity of TsukubaNaganoJapan
  4. 4.Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem MuseumFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations