, Volume 133, Issue 4, pp 359–378 | Cite as

Plastron respiration in marine intertidal oribatid mites (Acari, Fortuyniidae and Selenoribatidae)

  • Tobias PfingstlEmail author
  • Günther Krisper
Original Paper


Plastron respiration was investigated in the fortuyniid Alismobates inexpectatus, Fortuynia atlantica and the selenoribatid Carinozetes bermudensis. All these taxa inhabit intertidal zones of subtropical and tropical coasts and are exposed to tidal flooding. The utilization of plastron mechanisms enables these species to respire under water. Cerotegumental structures consisting of micropapillae and pillars bearing an outer sheet provide extensive areas where air is retained supplying the tracheal system with oxygen. A. inexpectatus and F. atlantica possess a dorsal and ventral plastron connected laterally by cuticular channels of the van der Hammen’s organ, whereas the specific configuration of these channels varies between the genera. The plastron of Carinozetes species spans the whole body except for all movable parts as legs and genital and anal valves. Plastron structures in juveniles of the families Fortuyniidae and Selenoribatidae were investigated for the first time in detail. Air-retaining cerotegument is also present in immatures of these taxa but is concentrated along lateral and ventral folds where series of pores lead into supposed tracheal organs. In juveniles of A. inexpectatus and F. atlantica, these organs are tubes with a length of approximately 3–15 μm, and in Carinozetes immatures, these organs are short saccules (0.5–1 μm).


Physical gill Microstructure Alismobates Fortuynia Carinozetes Oribatida 



Thanks to the Bermuda Institute of Ocean Sciences (BIOS) Inc. and its staff for their manifold support. T. P. also wants to thank Wolfgang Sterrer for being a great mentor. T. P. is grateful to Reinhart Schuster for inspiring his research on intertidal mites. We give thanks to Roy Norton for references and to the Centre for Electron Microscopy Graz (FELMI) for realizing the electron micrographs. The research was funded by the Austrian Science Fund (FWF): [J3150].


  1. Adis J, Messner B (1997) Adaptations to life under water: tiger beetles and millipedes. Ecol Stud 126:319–330CrossRefGoogle Scholar
  2. Alberti G, Coons LB (1999) Acari-Mites. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 8c. Wiley, New York, pp 515–1265Google Scholar
  3. Alberti G, Storch V, Renner H (1981) Über den feinstrukturellen Aufbau der Milbencuticula (Acari, Arachnida). Zool Jb Anat 105:183–236Google Scholar
  4. Alberti G, Norton RA, Adis J, Fernandez NA, Franklin E, Kratzmann M, Moreno AI, Weigmann G, Woas S (1997) Porose integumental organs of oribatid mites (Acari, Oribatida): 2. Fine structure. Zoologica (Stuttgart) 48(146):33–114Google Scholar
  5. Behan-Pelletier VM (1987) Redefinition of Ametroproctus (Acari: Oribatida) with description of new species. Can Entomol 119:505–536CrossRefGoogle Scholar
  6. Behan-Pelletier VM (1997) The semiaquatic genus Tegeocranellus (Acari: Oribatida: Ameronothroidea) of North and Central America. Can Entomol 129:537–577CrossRefGoogle Scholar
  7. Fielden LJ, Knolhoff LM, Villarreal SM, Ryan P (2011) Underwater survival in the dog tick Dermacentor variabilis (Acari: Ixodidae). J Insect Physiol 57:21–26PubMedCrossRefGoogle Scholar
  8. Grandjean F (1934) Les organes respiratoires secondaires des Oribates. Ann Soc Entomol Fr 3:109–146Google Scholar
  9. Hebets EA, Chapman RF (2000) Surviving the flood: plastron respiration in the non-tracheate arthropod Phrynus marginemaculatus (Amblypygi: Arachnida). J Insect Physiol 46:13–19PubMedCrossRefGoogle Scholar
  10. Hinton HE (1960) The chorionic plastron and its role in the eggs of the Muscinae (Diptera). Q J Microsc Sci 101:313–332Google Scholar
  11. Hinton HE (1969) Respiratory systems of insect egg-shells. Annu Rev Entomol 14:343–368PubMedCrossRefGoogle Scholar
  12. Hinton HE (1971) Plastron respiration in the mite, Platyseius italicus. J Insect Physiol 17:1185–1199CrossRefGoogle Scholar
  13. Krantz GW, Baker GT (1982) Observations on the plastron mechanism of Hydrozetes sp. (Acari: Oribatida: Hydrozetidae). Acarologia 23:273–277Google Scholar
  14. Luxton M (1986) A new species of Fortuynia (Acari: Cryptostigmata) from the marine littoral of Kenya. J Nat Hist 20:65–69CrossRefGoogle Scholar
  15. Messner B, Adis J (1995) Es gibt nur fakultative Plastronatmer unter den tauchenden Webespinnen. Dtsch Entomol Z 42:453–459Google Scholar
  16. Messner B, Adis J, Franklin Ribeiro E (1992) A comparative study on plastron structures in mites (Acari). Dtsch Entomol Z 39:159–176CrossRefGoogle Scholar
  17. Norton RA, Graham TB, Alberti G (1997a) A rotifer-eating ameronothrid (Acari: Ameronothridae) mite from ephemeral pools on the Colorado Plateau. In: Mitchell R, Horn JD, Needham GR, Welbourn WC (eds) Acarology IX. Proceedings of the 9th international congress of acarology. Ohio Biol Survey, Columbus, pp 539–542Google Scholar
  18. Norton RA, Alberti G, Weigmann G, Woas S (1997b) Porose integumental organs of oribatid mites (Acari, Oribatida): 1. Overview of types and distribution. Zoologica (Stuttgart) 48(146):1–31Google Scholar
  19. Pfingstl T (2013a) Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): implications for ecology and hydrochorous dispersal. Exp Appl Acarol 61:87–96PubMedCentralPubMedCrossRefGoogle Scholar
  20. Pfingstl T (2013b) Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Acari: Fortuyniidae and Selenoribatidae). Acarologia 53:369–382CrossRefGoogle Scholar
  21. Pfingstl T, Krisper G (2011) Juvenile stages of the arboricolous mite Cymbaeremaeus cymba (Nicolet, 1855) (Acari: Oribatida: Cymbaeremaeidae). Int J Acarol 37:175–189CrossRefGoogle Scholar
  22. Pfingstl T, Schuster R (2012a) First record of the littoral genus Alismobates (Acari: Oribatida) from the Atlantic ocean, with a redefinition of the family Fortuyniidae based on adult and juvenile morphology. Zootaxa 3301:1–33Google Scholar
  23. Pfingstl T, Schuster R (2012b) Carinozetes nov. gen. (Acari: Oribatida) from Bermuda and remarks on the present status of the Family Selenoribatidae. Acarologia 52:377–409CrossRefGoogle Scholar
  24. Pugh PJA, King PE, Fordy MR (1987a) The structure and probable function of the peritreme in intertidal Gamasina (Acarina: Mesostigmata). Zool J Linn Soc 89:393–407CrossRefGoogle Scholar
  25. Pugh PJA, King PE, Fordy MR (1987b) A comparison of the structure and function of the cerotegument in two species of Cryptostigmata (Acarina). J Nat Hist 21:603–616CrossRefGoogle Scholar
  26. Pugh PJA, King PE, Fordy MR (1990) Respiration in Fortuynia maculata Luxton (Fortuyniidae: Cryptostigmata: Acarina) with particular reference to the role of van der Hammen’s organ. J Nat Hist 24:1529–1547CrossRefGoogle Scholar
  27. Raspotnig G, Matischek T (2010) Anti-wetting strategies of soil-dwelling Oribatida (Acari). Acta Soc Zool Bohem 74:91–96Google Scholar
  28. Rounsevell DE, Greenslade P (1988) Cuticle structure and habitat in the Nanorchestidae (Acari: Prostigmata). Hydrobiologia 165:209–212CrossRefGoogle Scholar
  29. Schuster R (1966) Hornmilben (Oribatei) als Bewohner des marinen Litorals. Veröffentl Inst Meeresforsch Bremerhaven, Sonderband II (6. Meeresbiol. Symposion, Bremerhaven 1965): 319–327Google Scholar
  30. Thorpe WH, Crisp DJ (1947) Studies on plastron respiration. I. The biology of Aphelocheirus (Hemiptera, Aphelocheiridae, Naucoridae) and the mechanism of plastron respiration. J Exp Biol 24:227–269PubMedGoogle Scholar
  31. van der Hammen L (1960) Fortuynia marina gen. nov., sp. nov., an oribatid mite from the intertidal zone in Netherlands New Guinea. Zool Meded 37:1–9Google Scholar
  32. van der Hammen L (1963) Description of Fortuynia yunkeri nov. spec., and notes on the Fortuyniidae nov. fam. Acarologia 5:152–167Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of ZoologyUniversity of GrazGrazAustria

Personalised recommendations