, Volume 133, Issue 3, pp 321–342 | Cite as

Extreme tadpoles II: the highly derived larval anatomy of Occidozyga baluensis (Boulenger, 1896), an obligate carnivorous tadpole

  • Alexander Haas
  • Jana Pohlmeyer
  • David S. McLeod
  • Thomas Kleinteich
  • Stefan T. Hertwig
  • Indraneil Das
  • Daniel R. Buchholz
Original Paper


Tadpoles of Occidozyga species have been reported to be carnivorous, feeding on insects and other tadpoles. We present photographic evidence for the previously undocumented larval feeding behavior in O. baluensis. Furthermore, we present a detailed anatomical description of the skull, cranial musculature, and gross gut morphology based on three-dimensional reconstructions from serial sections and μCT imagery. The cranial anatomy of larval O. baluensis is highly derived in many characters, with respect to taxa outside the genus Occidozyga, most notably the palatoquadrate and hyobranchial apparatus, that play a major role in tadpole feeding. A large larval stomach was present in the specimens examined, indicative of a macrophagous carnivorous mode of feeding. Because of the relatively small oral orifice, relatively large-sized food items found in the larval stomach, and the tunnel-like arrangement of structures that form the buccal cavity, we hypothesize that suction feeding utilizing strong negative pressure is employed by this species. Furthermore, we propose that force, rather than speed, is the main characteristic of their feeding. The unique features of the study species substantially expand the known morphospace for tadpoles, particularly among the Acosmanura (Pelobatoidea, Pelodytoidea, and Neobatrachia). Except for Microhylidae, acosmanurans previously described possess limited innovative larval morphologies. Larval carnivory has evolved convergently several times in distant anuran clades and shows structural, behavioral, and functional differences in the known examples.


Lissamphibia Anura Dicroglossidae Carnivory Cranium Larval stomach 




















We wish to thank the Sarawak Forest Department, in particular Datuk Cheong Ek Choon, Director, and Bolhan Budeng, for issuing collecting permits (NPW.907.4–36) and export permits. The Economic Planning Unit, The Prime Minister’s Department, Malaysia, and especially Mrs. Munirah Abd. Manan were supportive in issuing research permit No. 1168 to A. Haas. Sabah Parks provided research permit TS/PTD/5/4, and we thank J. Nais. At the DESY facility, work would not have been possible without unconditional support of F. Beckmann and J. Herzen. We received skillful help from A.M. Vogt with some of the serial sectioning and clearing and staining. We gratefully acknowledge funding of the Volkswagen Foundation, Germany (Grant I/79 405 to AH and ID), Naturhistorisches Museum der Burgergemeinde Bern, Universität Hamburg, and Universiti Malaysia Sarawak. The work at Gunung Mulu National Park was generously supported in many different ways and on several occasions by Brian and Sue Clark and their staff, whom we cannot thank enough. The work of Rolf Beutel and Frank Friedrich for determination of the beetle larvae extracted from O. baluensis tadpoles is much appreciated.


  1. Ablan D (2008) Official Luxology modo 301 guide. Course Technology, Cengage Learning, BostonGoogle Scholar
  2. Alcala AC (1962) Breeding behavior and early development of frogs of Negros, Philippine Islands. Copeia 1962:679–726CrossRefGoogle Scholar
  3. Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109CrossRefGoogle Scholar
  4. Altig R, McDiarmid RW (1999) Diversity: familial and generic characterizations. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 295–335Google Scholar
  5. Altig R, Whiles M, Taylor C (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52:386–395CrossRefGoogle Scholar
  6. Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N (2013) Developmental origins of a novel gut morphology in frogs. Evol Dev 15:213–223PubMedCrossRefGoogle Scholar
  7. Boulenger GA (1896) Descriptions of new batrachians in the British Museum. Ann Mag Nat Hist 6:401–406CrossRefGoogle Scholar
  8. Bragg AN (1956) Dimorphism and cannibalism in tadpoles of Scaphiopus bombifrons (Amphibia, Salientia). Southwest Nat 1:105–108CrossRefGoogle Scholar
  9. Bragg AN (1964) Further study of predation and cannibalism in spadefoot tadpoles. Herpetologica 20:17–24Google Scholar
  10. Brower AVZ, Schawaraoch V (1996) Three steps of homology assessment. Cladistics 12:265–272Google Scholar
  11. Cannatella D (1999) Architecture: cranial and axial musculoskeleton. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, ChicagoGoogle Scholar
  12. Carroll EJ, Senevirantne AM, Ruibal R (1991) Gastric pepsin in an anuran larva. Dev Growth Differ 33:499–507CrossRefGoogle Scholar
  13. Cei JM (1968) Notes on the tadpoles and the breeding ecology of Lepidobatrachus (Amphibia: Ceratophrynidae). Herpetologica 24:141–146Google Scholar
  14. Crump ML (1992) Cannibalism in amphibians. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 256–276Google Scholar
  15. Das I (1995) Comparative morphology of the gastrointestinal tract in relation to diet in frogs from a locality in south India. Amphibia-Reptilia 16:289–293CrossRefGoogle Scholar
  16. De Beer GR (1937) The development of the vertebrate skull. The University of Chicago Press, ChicagoGoogle Scholar
  17. De Jongh HJ (1968) Functional morphology of the jaw apparatus of larval and metamorphosing Rana temporaria. Neth J Zool 18:1–103CrossRefGoogle Scholar
  18. De Jongh HJ, Gans C (1969) On the mechanism of respiration in the bullfrog, Rana catesbeiana. J Morphol 127:259–290CrossRefGoogle Scholar
  19. De Pinna MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394CrossRefGoogle Scholar
  20. Deban SM, Olson WM (2002) Suction feeding by a tiny predatory tadpole. Nature 420:41–42PubMedCrossRefGoogle Scholar
  21. Dietrich HF, Fontaine AR (1975) A decalcification method for ultrastructure of echinoderm tissues. Stain Technol 50:351–354PubMedGoogle Scholar
  22. Dingerkus G, Uhler LD (1977) Enzyme clearing of Alcian Blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232PubMedGoogle Scholar
  23. Dodd JM (1950) Ciliary feeding mechanism in anuran larvae. Nature 165:283PubMedCrossRefGoogle Scholar
  24. Drewes RC, Altig R, Howell KM (1989) Tadpoles of three frog species endemic to the forests of the Eastern Arc Mountains, Tanzania. Amphibia-Reptilia 10:435–443CrossRefGoogle Scholar
  25. Fabrezi M (2011) Heterochrony in growth and development in anurans from the Chaco of South America. Evol Biol 38:390–411CrossRefGoogle Scholar
  26. Fabrezi M, Lobo F (2009) Hyoid skeleton, its related muscles, and morphological novelties in the frog Lepidobatrachus (Anura, Ceratophryidae). Anat Rec 292:1700–1712CrossRefGoogle Scholar
  27. Fabrezi M, Quinzio SI (2008) Morphological evolution in Ceratophryinae frogs (Anura, Neobatrachia): the effects of heterochronic changes during larval development and metamorphosis. Zool J Linn Soc 154:752–780CrossRefGoogle Scholar
  28. Fox S (1990) Opportunistic cannibalism in tadpoles of the Great Basin Spadefoot Toad, Scaphiopus intermontanus. MA Thesis, San Francisco State UniversityGoogle Scholar
  29. Frost DR (2013) Amphibian Species of the World: an Online Reference. Version 5.6 (9 Jan 2013). Accessible at: American Museum of Natural History, New York
  30. Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sá RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370CrossRefGoogle Scholar
  31. Fry AE, Kaltenbach JC (1992) Gastrointestinal tract length in two species of anuran tadpoles, Ceratophrys ornata and Rana pipiens. Am Zool 32:23AGoogle Scholar
  32. Fry AE, Kaltenbach JC (1999) Histology and lectin-binding patterns in the digestive tract of the carnivorous larvae of the anuran Ceratophrys ornata. J Morphol 241:19–32PubMedCrossRefGoogle Scholar
  33. Gaupp E (1893) Beitraege zur Morphologie des Schaedels. I. Primordial-Cranium und Kieferbogen von Rana fusca. Morphol Arb 2:275–481Google Scholar
  34. Gaupp E (1894) Beitraege zur Morphologie des Schaedels. II. Das Hyo-Branchial-Skelet der Anuren und seine Umwandlung. Morphol Arb 3:389–437Google Scholar
  35. Gaupp E (1896) Ecker’s und Wiedersheim’s Anatomie des Frosches. Erste Abteilung, Lehre vom Skelet und vom Muskelsystem. Friedrich Vieweg und Sohn, BraunschweigGoogle Scholar
  36. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  37. Gradwell N (1972) Gill irrigation in Rana catesbeiana. Part I. On the anatomical basis. Can J Zool 50:481–499PubMedCrossRefGoogle Scholar
  38. Griffiths I (1961) The form and function of the foregut in anuran larvae (Amphibia: Salientia) with particular reference to the Manicotto Glandulare. Proc Zool Soc Lond 137:249–283CrossRefGoogle Scholar
  39. Grosjean S, Vences M, Dubois A (2004) Evolutionary significance of oral morphology in the carnivorous tadpoles of tiger frogs, genus Hoplobatrachus (Ranidae). Biol J Linn Soc 81:171–181CrossRefGoogle Scholar
  40. Haas A (1997) The larval hyobranchial apparatus of discoglossoid frogs: its structure and bearing on the systematics of the Anura (Amphibia: Anura). J Zool Syst Evol Res 53:179–197Google Scholar
  41. Haas A (1999) Larval and metamorphic skeletal development in the fast developing frog Pyxicephalus adspersus (Anura, Ranidae). Zoomorphology 119:23–35CrossRefGoogle Scholar
  42. Haas A (2001) Mandibular arch musculature of anuran tadpoles, with comments on homologies of amphibian jaw muscles. J Morphol 247:1–33Google Scholar
  43. Haas A (2003) Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19:23–89Google Scholar
  44. Haas A, Hertwig S, Das I (2006) Extreme tadpoles: the morphology of the fossorial megophryid larva, Leptobrachella mjobergi. Zoology 109:26–42PubMedCrossRefGoogle Scholar
  45. Haas A, Richards SJ (1998) Correlations of cranial morphology, ecology, and evolution in Australian suctorial tadpoles of the genera Litoria and Nyctimystes (Amphibia: Anura: Hylidae: Pelodryadinae). J Morphol 238:109–141Google Scholar
  46. Harris RN (1999) The anuran tadpole: evolution and maintenance. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. The University of Chicago Press, Chicago, IL, pp 279–294Google Scholar
  47. Heyer WR (1973) Ecological interaction of frog larvae at a seasonal tropical location in Thailand. J Herpetol 7:337–361CrossRefGoogle Scholar
  48. Hintze-Podufal C, Schroer H (1989) Aspects of Hymenochirus boettgeri development. Fortschr Zool 35:283–286Google Scholar
  49. Inger RF (1985) Tadpoles of the forested regions of Borneo. Fieldiana Zool New Ser 26:1–89Google Scholar
  50. Inger RF, Stuebing RB (2005) A field guide to the frogs of Borneo. Natural History Publications (Borneo), Sdn Bhd, Kota KinabaluGoogle Scholar
  51. Ishizuya-Oka A, Shimozawa A (1987) Development of the connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis. Anat Anz Jena 164:81–93Google Scholar
  52. Iskandar DT (1998) The amphibians of Java and Bali. BogorGoogle Scholar
  53. Iskandar DT, Arifin U, Rachmansah A (2011) A new frog (Anura, Dicroglossidae) related to Occidozyga semipalmata Smith, 1927, from the eastern Peninsula of Sulawesi, Indonesia. Raffles Bull Zool 59:219–228Google Scholar
  54. Jungfer K-H (1996) Reproduction and parental care of the coronated treefrog, Anotheca spinosa (Steindachner, 1864) (Anura: Hylidae). Herpetologica 52:25–32Google Scholar
  55. Kaltenbach JC, Fry AE, Colpitts KM, Faszewski EE (2012) Apoptosis in the digestive tract of herbivorous Rana pipiens larvae and carnivorous Ceratophrys ornata larvae: an immunohistochemical study. J Morphol 273:103–108PubMedCrossRefGoogle Scholar
  56. Kenny JS (1969) Feeding mechanisms in anuran larvae. J Zool Lond 157:225–246CrossRefGoogle Scholar
  57. Kleinteich T, Haas A (2006) Cranial musculature in the larva of the caecilian, Ichthyophis kohtaoensis (Lissamphibia: Gymnophiona). J Morphol 268:74–88CrossRefGoogle Scholar
  58. Kleinteich T, Haas A (2011) The hyal and ventral branchial muscles in caecilian and salamander larvae: homologies and evolution. J Morphol 272:598–613PubMedCrossRefGoogle Scholar
  59. Lambertini G (1929) Il manicotto glandulare di Rana esculenta nei suoi aspetti strutturali e nelle sue evoluzioni metamorfiche durante lo sviluppo. Ric Morfol Roma 9:71–88Google Scholar
  60. Lavilla EO (1990) The tadpole of Hyla nana (Anura: Hylidae). J Herpetol 24:207–209CrossRefGoogle Scholar
  61. Lavilla EO, de Sá R (2001) Chondrocranium and visceral skeleton of Atelopus tricolor and Atelophryniscus chrysophorus tadpoles (Anura, Bufonidae). Amphibia-Reptilia 22:167–177CrossRefGoogle Scholar
  62. Lavilla EO, Fabrezi M (1992) Anatomia craneal de larvas de Lepidobatrachus llanensis y Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zool Lilloana 42:5–11Google Scholar
  63. Leong TM, Chou LM (1999) Larval diversity and development in the Singapore Anura (Amphibia). Raffles Bull Zool 47:81–137Google Scholar
  64. Malkmus R, Manthey U, Vogel G, Hoffmann P, Kosuch J (2002) Amphibians and Reptiles of Mount Kinabalu (North Borneo). A.R.G. Gantner K.G., Koeltz Scientific Books, KoenigsteinGoogle Scholar
  65. McAvoy JW, Dixon KE (1977) Cell proliferation and renewal in the small intestine epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool 202:129–138CrossRefGoogle Scholar
  66. McDiarmid RW, Altig R (1999) Tadpoles: the biology of anuran larvae. University Chicago Press, ChicagoGoogle Scholar
  67. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:1–14CrossRefGoogle Scholar
  68. Mulisch M, Welsch U (2010) Romeis-Mikroskopische Technik. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  69. Natale GS, Alcalde L, Herrera R, Cajade R, Schaefer EF, Marangoni F, Trudeau VL (2011) Underwater acoustic communication in the macrophagic carnivorous larvae of Ceratophrys ornata (Anura: Ceratophryidae). Acta Zool 92:46–53CrossRefGoogle Scholar
  70. Orton GL (1953) The systematics of vertebrate larvae. Syst Zool 2:63–75CrossRefGoogle Scholar
  71. Patterson C (1982) Morphological characters and homology. In: Joysey KA, Friday AE (eds) Problems of phylogenetic reconstruction. Academic Press, New YorkGoogle Scholar
  72. Petranka JW, Kennedy CA (1999) Pond tadpoles with generalized morphology: is it time to reconsider their functional roles in aquatic communities? Oecologia 120:621–631CrossRefGoogle Scholar
  73. Pfennig DW (1992) Polyphenism in spadefoot toad tadpoles as a locally adjusted evolutionarily stable strategy. Evolution 46:1408–1420CrossRefGoogle Scholar
  74. Pomeroy, LV (1981) Developmental polymorphism in the tadpoles of the spadefoot toad Scaphiopus multiplicatus. PhD dissertation. University of California, RiversideGoogle Scholar
  75. Pope CH (1931) Notes on amphibians from Fukien, Hainan, and other parts of China. Bull Am Mus Nat Hist 61:397–610Google Scholar
  76. Púgener A, Maglia AM, Trueb L (2003) Revisiting the contribution of larval characters to an analysis of phylogenetic relationships of basal anurans. Zool J Linn Soc 139:129–155CrossRefGoogle Scholar
  77. Pusey HK (1943) On the head of the liopelmid frog, Ascaphus truei: I. The chrondrocranium, jaws, arches, and muscles of a partly-grown larva. Q J Microsc Sci 84:105–185Google Scholar
  78. Pyron AR, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phyl Evol 61:543–583CrossRefGoogle Scholar
  79. Richter SS (2005) Homologies in phylogenetic analyses—concept and tests. Theory Biosci 124:105–120PubMedGoogle Scholar
  80. Rieppel O, Kearney M (2002) Similarity. Biol J Linn Soc 75:59–82CrossRefGoogle Scholar
  81. Roček Z (2003) Larval development and evolutionary origin of the anuran skull. In: Heatwole H, Davies M (eds) Amphibian biology. Surrey Beatty, Sons PTY Limited, Chipping Norton, pp 1877–1995Google Scholar
  82. Roelants K, Gower DJ, Wilkinson M, Loader SP, Biju SD, Guillaume K, Moriau L, Bossuyt F (2007) Global patterns of diversification in the history of modern amphibians. PNAS 104:887–892PubMedCentralPubMedCrossRefGoogle Scholar
  83. Roelants K, Haas A, Bossuyt F (2011) Anuran radiations and the evolution of tadpole morphospace. PNAS 108:8731–8736PubMedCentralPubMedCrossRefGoogle Scholar
  84. Ruibal R, Thomas E (1988) The obligate carnivorous larvae of the frog, Lepidobatrachus laevis (Leptodactylidae). Copeia 1988:591–604CrossRefGoogle Scholar
  85. Satel SL, Wassersug RJ (1981) On the relative sizes of buccal floor depressor and elevator musculature in tadpoles. Copeia 1981:129–137CrossRefGoogle Scholar
  86. Sheil CA (1999) Osteology and skeletal development of Pyxicephalus adspersus (Anura: Ranidae: Raninae). J Morphol 240:49–75Google Scholar
  87. Shi Y-B, Ishizuya-Oka A (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr Top Dev Biol 32:205–235PubMedCrossRefGoogle Scholar
  88. Smith MA (1916) On the frogs of the genus Oxyglossis. J Nat Hist Soc Siam 2:172–175Google Scholar
  89. Sokol OM (1962) The tadpole of Hymenochirus boettgeri. Copeia 1962:273–284CrossRefGoogle Scholar
  90. Sokol OM (1975) The phylogeny of anuran larvae: a new look. Copeia 1975:1–23CrossRefGoogle Scholar
  91. Sokol OM (1981) The larval chondrocranium of Pelodytes punctatus, with a review of tadpole chondrocrania. J Morphol 169:161–183CrossRefGoogle Scholar
  92. Stevens CE, Hume ID (1995) Comparative physiology of the vertebrate digestive system. Cambridge University Press, CambridgeGoogle Scholar
  93. Storz BL, Travis J (2007) Temporally dissociated, trait-specific modifications underlie phenotypic polyphenism in Spea multiplicata, which suggests modularity. Sci World J 7:715–726CrossRefGoogle Scholar
  94. Taylor EH, Elbel RE (1958) Contribution to the herpetology of Thailand. Univ Kans Sci Bull 38:1033–1189Google Scholar
  95. Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9:107–119Google Scholar
  96. Ueck M (1967) Der Manicotto Glandulare (“Drüsenmagen”) der Anurenlarve. Z wiss Zool 176:173–270Google Scholar
  97. Ulloa Kreisel ZE (2002) Caracteriticas morfologicas del tubo digestivo en larvas carnivoras de Lepidobatrachus llanensis (Anura: Leptodactylidae). Acta Zool Lilloana 46:31–38Google Scholar
  98. Veeranagoudar DK, Radder RS, Shanbhag BA, Saidapur SK (2009) Jumping behavior of semiterrestrial tadpoles of Indirana beddomii (Günth.): relative importance of tail and body size. J Herpetol 43:680–684CrossRefGoogle Scholar
  99. Vera Candioti MF (2005) Morphology and feeding in tadpoles of Ceratophrys cranwelli (Anura: Leptodactylidae). Acta Zool 86:1–11CrossRefGoogle Scholar
  100. Vera Candioti MF (2007) Anatomy of anuran tadpoles from lentic water bodies: systematic relevance and correlation with feeding habits. Zootaxa 1600:1–175Google Scholar
  101. Vera Candioti MF (2008) Larval anatomy of Andean tadpoles of Telmatobius (Anura: Ceratophryidae) from northwestern Argentina. Zootaxa 1938:40–60Google Scholar
  102. Vera Candioti MF, Lavilla EO, Echeverria DD (2004) Feeding mechanisms of two treefrogs, Hyla nana and Scinax nasicus (Anura: Hylidae). J Morph 261:206–224PubMedCrossRefGoogle Scholar
  103. Wassersug RJ (1980) Internal oral features of larvae from eight anuran families: functional, systematic, evolutionary, and ecological considerations. Misc Pub Mus Nat Hist Kans 68:1–146Google Scholar
  104. Wassersug R (1984) The Pseudohemisus tadpole: a morphological link between microhylid (Orton type 2) and ranoid (Orton type 4) larvae. Herpetologica 40:138–149Google Scholar
  105. Wassersug RJ (1989) What, if anything is a microhylid (Orton type II) tadpole? In: Splechtna H (ed) Trends in vertebrate morphology. G. Fischer, Stuttgart, pp 534–538Google Scholar
  106. Wassersug R, Heyer WR (1988) A survey of internal oral features of leptodactylid larvae. Smith Contr Zool 457:1–99CrossRefGoogle Scholar
  107. Wassersug RJ, Pyburn WF (1987) The biology of the Pe-ret’ toad Otophryne robusta (Microhylidae), with special consideration of its fossorial larva and systematic relationships. Zool J Linn Soc 91:137–169CrossRefGoogle Scholar
  108. Zhang P, Liang D, Mao RL, Hillis DM, Wake DB, Cannatella DC (2013) Efficient sequencing of anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. Mol Biol Evol 30:1899–1915PubMedCrossRefGoogle Scholar
  109. Ziermann JM, Infante C, Hanken J, Olsson L (2011) Morphology of the cranial skeleton and musculature in the obligate carnivorous tadpole of Lepidobatrachus laevis (Anura: Ceratophryidae). Acta Zool 94:101–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander Haas
    • 1
  • Jana Pohlmeyer
    • 1
  • David S. McLeod
    • 2
  • Thomas Kleinteich
    • 3
  • Stefan T. Hertwig
    • 4
  • Indraneil Das
    • 5
  • Daniel R. Buchholz
    • 6
  1. 1.Biozentrum Grindel und Zoologisches Museum HamburgHamburgGermany
  2. 2.University of Kansas Biodiversity InstituteLawrenceUSA
  3. 3.Functional Morphology and BiomechanicsChristian-Albrechts-Universität KielKielGermany
  4. 4.Naturhistorisches Museum der Burgergemeinde BernBernSwitzerland
  5. 5.Institute of Biodiversity and Environmental ConservationUniversiti Malaysia SarawakKota SamarahanMalaysia
  6. 6.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations