, Volume 133, Issue 1, pp 99–109 | Cite as

Facultative paedomorphosis and the pattern of intra- and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris)

  • Ana IvanovićEmail author
  • Milena Cvijanović
  • Mathieu Denoël
  • Maja Slijepčević
  • Miloš L. Kalezić
Original Paper


Paedomorphosis, the presence of ancestral larval and juvenile traits that occur at the descendent adult stage, is an evolutionary phenomenon that shaped morphological evolution in many vertebrate lineages, including tailed amphibians. Among salamandrid species, paedomorphic and metamorphic phenotypes can be observed within single populations (facultative paedomorphosis). Despite wide interest in facultative paedomorphosis and polymorphism produced by heterochronic changes (heterochronic polymorphism), the studies that investigate intraspecific morphological variation in facultative paedomorphic species are largely missing. By quantifying the cranium size and development (bone development and remodeling), we investigated the variation at multiple levels (i.e., between sexes, populations and species) of two facultatively paedomorphic European newt species: the alpine and the smooth newt. The pattern of variation between paedomorphs (individuals keeping larval traits at the adult stage) and metamorphs (metamorphosed adult individuals) varied between species and among populations within a single species. The patterns of variation in size and skull formation appear to be more uniform in the alpine than in the smooth newt, indicating that developmental constraints differed between species (more pronounced in alpine than in smooth newt). Our study shows that the cranial skeleton provides detailed insight in the pattern of variation and divergence in heterochronic polymorphism within and between species and open new questions related to heterochronic polymorphism and evolution of cranial skeleton.


European newts Skull morphology Development Heterochronic polymorphism 



We thank two anonymous reviewers for useful comments and suggestions. This work was supported by the Serbian Ministry of Education and Science (Grant No. 173043). MD is a Research Associate at Fonds de la Recherche Scientifique (F.R.S.-FNRS). AI acknowledges financial support from a SyntheSys grant (NL-TAF 3082) and a Naturalis Temminck fellowship, and MD from a F.R.S.-FNRS research grant (J.0008.13) and a Fonds Spéciaux de la Recherche grant from the University of Liège (C-13/03).

Supplementary material

Three-dimensional view of paedomorphic Ichthyosaura alpestris. (MP4 2609 kb)

Three-dimensional view of paedomorphic Lissotriton vulgaris. (MP4 1492 kb)

435_2013_202_MOESM3_ESM.doc (53 kb)
Supplementary material 3 (DOC 53 kb)
435_2013_202_MOESM4_ESM.doc (84 kb)
Supplementary material 4 (DOC 84 kb)


  1. Alberch P (1983) Morphological variation in the neotropical salamander genus Bolitoglossa. Evolution 37:906–919CrossRefGoogle Scholar
  2. Allen CE, Beldade P, Zwaan BJ, Brakefield PM (2008) Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol Biol 8:94CrossRefPubMedCentralPubMedGoogle Scholar
  3. Babik W, Branicki W, Crnobrnja-Isailović J et al (2005) Phylogeography of two European newt species: discordance between mtDNA and morphology. Mol Ecol 14:2475–2491CrossRefPubMedGoogle Scholar
  4. Bever GS (2009a) Postnatal ontogeny of the skull in the extant North American turtle Sternotherus odoratus (Cryptodira: Kinosternidae). Bull Am Mus Nat Hist 330:1–97CrossRefGoogle Scholar
  5. Bever GS (2009b) The postnatal skull of the extant turtle Pseudemys texana (Cryptodira: Emydidae) with comments on the study of discrete intraspecific variation. J Morphol 270:97–128CrossRefPubMedGoogle Scholar
  6. Bhullar BA (2012) A phylogenetic approach to ontogeny and heterochrony in the fossil record: cranial evolution and development in anguimorphan lizards (Reptilia: Squamata). J Exp Zool Part B Mol Dev Evol 318:521–530CrossRefGoogle Scholar
  7. Bhullar BA, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature 487:223–226CrossRefPubMedGoogle Scholar
  8. Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal in life history evolution in plethodontid salamanders. Evolution 58:2809–2822PubMedGoogle Scholar
  9. Denoël M (2002) Paedomorphosis in the Alpine newt (Triturus alpestris): decoupling behavioural and morphological change. Behav Ecol Sociobiol 52:394–399CrossRefGoogle Scholar
  10. Denoël M (2003) How do paedomorphic newts cope with lake drying? Ecography 26:405–410CrossRefGoogle Scholar
  11. Denoël M, Joly P (2000) Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia, Caudata). Proc R Soc Lond B 267:1481–1485CrossRefGoogle Scholar
  12. Denoël M, Poncin P (2001) The effect of food on growth and metamorphosis of paedomorphs in Triturus alpestris apuanus. Arch Hydrobiol 152:661–670Google Scholar
  13. Denoël M, Schabetsberger R (2003) Resource partitioning in two heterochronic populations of Greek Alpine newts, Triturus alpestris veluchiensis. Acta Oecol 24:55–64CrossRefGoogle Scholar
  14. Denoël M, Joly P, Whiteman HH (2005) Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol Rev Camb Philos Soc 80:663–671CrossRefPubMedGoogle Scholar
  15. Denoël M, Ivanović A, Džukić G, Kalezić ML (2009) Sexual size dimorphism in the evolutionary context of facultative paedomorphosis: insights from European newts. BMC Evol Biol 9:278CrossRefPubMedCentralPubMedGoogle Scholar
  16. Dingerkus G, Uhler LD (1977) Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232PubMedGoogle Scholar
  17. Djorović A, Kalezić ML (2000) Paedogenesis in European newts (Triturus: Salamandridae): cranial morphology during ontogeny. J Morphol 243:127–139CrossRefPubMedGoogle Scholar
  18. Eastman JM, Storfer A (2011) Correlations of life-history and distributional-range variation with salamander diversification rates: evidence for species selection. Syst Biol 60:503–518CrossRefPubMedGoogle Scholar
  19. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, CambridgeGoogle Scholar
  20. Hallgrímsson B, Hall BK (2005) In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology B. Elsevier Academic Press, New YorkGoogle Scholar
  21. Han X, Fu J (2013) Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol Biol 13:27CrossRefPubMedCentralPubMedGoogle Scholar
  22. Hanken J (1989) Development and evolution in amphibians. Am Sci 77:336–343Google Scholar
  23. Ivanović A, Sotiropoulos K, Furtula M, Džukić G, Kalezić ML (2008) Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula. J Zool Syst Evol Res 46:381–387CrossRefGoogle Scholar
  24. Johnson CK, Voss SR (2013) Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution. Curr Top Dev Biol 103:229–258CrossRefPubMedGoogle Scholar
  25. Kalezić ML, Džukić G (1986) The frequent occurrence of paedomorphosis in the smooth newt (Triturus vulgaris) populations from Submediterranean area of Yugoslavia. Amphibia-Reptilia 7:86–89CrossRefGoogle Scholar
  26. Kalezić ML, Cvetković D, Djorović A, Džukić G (1996) Alternative life–history pathways: paedomorphosis and adult fitness in European newts (Triturus vulgaris and T. alpestris). J Zool Sys Evol Res 34:1–7CrossRefGoogle Scholar
  27. Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635PubMedGoogle Scholar
  28. Laudet V (2011) The origins and evolution of vertebrate metamorphosis. Curr Biol 21:R726–R737CrossRefPubMedGoogle Scholar
  29. Lebedkina NS (2004) Evolution of the amphibian skull. Pensoft, SofiaGoogle Scholar
  30. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  31. Mabee PM, Olmstead KL, Cubbage CC (2000) An experimental study of intraspecific variation, developmental timing, and heterochrony in fishes. Evolution 54:2091–2106PubMedGoogle Scholar
  32. Marconi M, Simonetta AM (1988) The morphology of the skull in neotenic and normal Triturus vulgaris meridionalis (Boulenger) (Amphibia, Caudata, Salamandridae). Monit Zool ltal 22:365–396Google Scholar
  33. McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60:4–13Google Scholar
  34. McNamara KJ (2012) Heterochrony: the evolution of development. Evo Edu Outreach 5:203–218CrossRefGoogle Scholar
  35. Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, ChicagoGoogle Scholar
  36. Rieppel O (1993) Patterns of diversity in the reptilian skull. In: Hanken J, Hall BK (eds) The skull, vol. II. Patterns of structural and systematic diversity. University Press, Chicago, pp 344–390Google Scholar
  37. Roček Z (1996) Skull of the neotenic salamandrid amphibian Triturus alpestris and abbreviated development in the tertiary Salamandridae. J Morphol 230:187–197CrossRefGoogle Scholar
  38. Rohlf FJ (2005) tpsDig. Accessed 24 Mar 2013
  39. Rose CS (1999) Hormonal control in larval development and evolution—Amphibians. In: Hall K, Wake MH (eds) The origin and evolution of larval forms. Academic Press, San Diego, pp 167–217CrossRefGoogle Scholar
  40. Rose CS (2003) The developmental morphology of salamander skulls. In: Heatwole H, Davies M (eds) Amphibian biology, vol. V. Osteology. Surrey Beatty and Sons. Pty. Ltd, Australia, pp 1684–1781Google Scholar
  41. Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774CrossRefGoogle Scholar
  42. Schoch RR (2010) Heterochrony: the interplay between development and ecology in an extinct amphibian clade. Paleobiology 36:318–334CrossRefGoogle Scholar
  43. Semlitsch RD, Wilbur HM (1989) Artificial selection for paedomorphosis in the salamander Ambystoma talpoideum. Evolution 43:105–112CrossRefGoogle Scholar
  44. Semlitsch RD, Harris RN, Wilbur HM (1990) Paedomorphosis in Ambystoma talpoideum: maintenance of population variation and alternative life-history pathways. Evolution 44:1604–1613CrossRefGoogle Scholar
  45. Shaffer HB (1984) Evolution in a paedomorphic lineage. II. Allometry and form in the Mexican ambystomatid salamanders. Evolution 38:1207–1218CrossRefGoogle Scholar
  46. Shaffer HB, Voss SR (1996) Phylogenetic and mechanistic analysis of a developmentally integrated character complex: alternate life history modes in ambystomatid salamanders. Am Zool 36:24–35Google Scholar
  47. Sheets HD (2003) IMP—integrated morphometrics package. Accessed 24 Mar 2013
  48. Smirnov SV, Vassilieva AB (2003) Skeletal and dental ontogeny in the smooth newt Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation. Russ J Herp 10:93–110Google Scholar
  49. Sotiropoulos K, Eleftherakos K, Džukić G, Kalezić ML, Legakis A, Polymeni RM (2007) Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol Phylogenet Evol 45:211–226CrossRefPubMedGoogle Scholar
  50. Steinfartz S, Vicario S, Arntzen JW, Caccone A (2007) A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Zool B Mol Dev Evol 306B:139–162CrossRefGoogle Scholar
  51. Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13:542–548CrossRefPubMedGoogle Scholar
  52. Voss SR (1997) Adaptive evolution via a major gene effect: paedomorphosis in the Mexican axolotl. PNAS 94:14185–14189CrossRefPubMedGoogle Scholar
  53. Voss SR, Kump KD, Walker JA, Shaffer HB, Voss GJ (2012) Thyroid hormone responsive QTL and evolution of paedomorphic salamanders. Heredity 109:293–298CrossRefPubMedGoogle Scholar
  54. Wagner GP (1988) The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J Evol Biol 1:45–66CrossRefGoogle Scholar
  55. Weins JJ, Hoverman JT (2008) Digit reduction, body size, and paedomorphosis in salamanders. Evol Dev 10:449–463CrossRefGoogle Scholar
  56. Weisrock DW, Papenfuss TJ, Macey JR et al (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Mol Phylogenet Evol 41:368–383CrossRefPubMedGoogle Scholar
  57. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278CrossRefGoogle Scholar
  58. Whiteman HH (1994) Evolution of facultative paedomorphosis in salamanders. Quart Rev Biol 69:205–221CrossRefGoogle Scholar
  59. Whiteman HH, Semlitsch RD (2005) Asymmetric reproductive isolation among polymorphic salamanders. Biol J Linn Soc 86:265–281CrossRefGoogle Scholar
  60. Whiteman HH, Wissinger SA, Denoël M, Mecklin CJ, Gerlanc NM, Gutrich JJ (2012) Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168:109–118CrossRefPubMedGoogle Scholar
  61. Wiens JJ (1995) Polymorphic characters in phylogenetic systematics. Syst Biol 44:482–500Google Scholar
  62. Wiens JJ, Bonet RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110CrossRefPubMedGoogle Scholar
  63. Zajc I, Arntzen JW (1999) Phylogenetic relationships of the European newts (genus Triturus) tested with mitochondrial DNA-sequence data. Contrib Zool 68:73–81Google Scholar
  64. Zhang P, Papenfuss TJ, Wake MH, Qu L, Wake DB (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 49:586–597CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ana Ivanović
    • 1
    Email author
  • Milena Cvijanović
    • 3
  • Mathieu Denoël
    • 2
  • Maja Slijepčević
    • 3
  • Miloš L. Kalezić
    • 1
    • 3
  1. 1.Faculty of Biology, Institute for ZoologyUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratory of Fish and Amphibian Ethology, Behavioural Biology UnitUniversity of LiègeLiègeBelgium
  3. 3.Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia

Personalised recommendations