Zoomorphology

, Volume 132, Issue 3, pp 253–259 | Cite as

Phagocytosis of algal chloroplasts by digestive gland cells in the photosynthesis-capable slug Elysia timida (Mollusca, Opisthobranchia, Sacoglossa)

  • Rainer Martin
  • Paul Walther
  • Karl-Heinz Tomaschko
Original Paper

Abstract

Parapodia of the sacoglossan slug Elysia timida were preserved by high-pressure cryofixation during feeding experiments and investigated with transmission electron microscopy. This slug has been known for its long-term retention of active chloroplasts and photosynthesis. We observed different stages of phagocytosis of chloroplast components from ingested algal food by slug digestive gland cells. Thylakoid stacks and stroma of chloroplasts were engulfed by the slug cells. In the slug cells thylakoids were surrounded by one membrane only. This membrane is interpreted as having been generated by the mollusk during phagocytosis. It is inferred to be eukaryotic in origin and unlikely, therefore, to be endowed with the translocons system ordinarily regulating import of algal gene-encoded plastid preproteins. Our structural findings suggest that chloroplast components in the slug cells are thylakoid stacks with chloroplast stroma only.

Keywords

Kleptoplasty Mollusk cells Membranes High-pressure cryofixation Ultrastructure 

Notes

Acknowledgments

We would like to thank Eberhard Schmid and Dr. Katharina Höhn for assistance in high-pressure cryofixation and freeze substitution of the samples. Dipl. biol. Valerie Schmitt supplied living specimens from Banyuls-sur-mer (France) under various conditions, after fasting and light exposition, or freshly fed and helped to prepare tissues for cryofixation. Prof. Edward Koenig (Buffalo, USA) critically read and revised the manuscript.

References

  1. Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479CrossRefGoogle Scholar
  2. Evertsen J, Johnsen G (2009) In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar Biol 156:847–859CrossRefGoogle Scholar
  3. Giménez-Casalduero F, Muniain C, González-Wangüemert M, Garrote-Moreno A (2011) Elysia timida (Risso,1818) three decades of research. Anim Biodivers Conserv 34:217–227Google Scholar
  4. Graves DA, Gibson MA, Bleakney JS (1979) The digestive diverticula of Alderia modesta and Elysia chlorotica (Opisthobranchia: Sacoglossa). Veliger 21:415–422Google Scholar
  5. Händeler K, Grzymbowski YP, Krug PJ, Wägele H (2009) Functional chloroplasts in metazoan cells—a unique evolutionary strategy in animal life. Frontiers Zool 6:28–45CrossRefGoogle Scholar
  6. Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. J Exp Bot 5:11–26Google Scholar
  7. Marin A, Ros J (1993) Ultrastructural and ecological aspects of the development of chloroplast retention in the sacoglossan gastropod Elysia timida. J Mol Studies 59:95–104CrossRefGoogle Scholar
  8. McLean N (1976) Phagocytosis of chloroplasts in Placida dendritica (Gastropoda: Sacoglossa). J Exp Zool 197:321–330CrossRefGoogle Scholar
  9. Menzel D (1994) An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma 179:166–171CrossRefGoogle Scholar
  10. Müller M, Moor H (1984) Cryofixation of suspensions and tissue by propane jet freezing and high pressure freezing. In: Bailey GW (ed) Proceedings of 42nd annual meeting on Electron Microscope Society of America. CA, San FranciscoGoogle Scholar
  11. Natesan SKA, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787–797CrossRefPubMedGoogle Scholar
  12. Pierce SK, Curtis NE (2012) The cell biology of the chloroplast symbiosis in sacoglossan sea slugs. Intern Rev Cell Mol Biol 293:123–148CrossRefGoogle Scholar
  13. Pierce SK, Xiaodong F, Schwartz JA, Xuanting J, Zhao Wei, Curtis NE, Kocot KM, Bicheng Y, Jian W (2012) Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Mol Biol Evol 29(6):1545–1556CrossRefPubMedGoogle Scholar
  14. Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Plant Physiol 123:29–38CrossRefPubMedGoogle Scholar
  15. Rumpho ME, Summer EJ, Green BJ, Fox TC, Manhart JR (2001) Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? Zoology 104:303–312CrossRefPubMedGoogle Scholar
  16. Rumpho ME, Dastoor FP, Manhart JR, Lee J (2007) The kleptoplast. In: Wise RA, Hoober JK (eds) The structure and function of plastids, pp 451–473Google Scholar
  17. Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, Moustafa A, Manhart JR (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Nat Acad Sci USA 105:17867–17871CrossRefPubMedGoogle Scholar
  18. Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214:303–311CrossRefPubMedGoogle Scholar
  19. Schwartz JA, Curtis NE, Pierce SK (2010) Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol 37:29–37CrossRefGoogle Scholar
  20. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet 5:123–135CrossRefPubMedGoogle Scholar
  21. Touret N, Paroutis P, Grinstein S (2005) The nature of the phagosomal membrane: endoplasmic reticulum versus plasmalemma. J Leucocyte Biol 77:878–885CrossRefGoogle Scholar
  22. Wägele H, Deusch O, Händeler K, Martin R, Schmitt V, Christa G, Pinzger B, Gould SB, Dagan T, Klussman-Kolb A, Martin W (2011) Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol 28:699–706CrossRefPubMedGoogle Scholar
  23. Walther P, Ziegler A (2002) Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208:3–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rainer Martin
    • 1
  • Paul Walther
    • 1
  • Karl-Heinz Tomaschko
    • 2
  1. 1.Z. E. Elektronenmikroskopie, Universität UlmUlmGermany
  2. 2.Akademie für Gesundheitsberufe, UniversitätsklinikumUlmGermany

Personalised recommendations