Zoomorphology

, Volume 131, Issue 2, pp 95–114 | Cite as

Structure, function and evolution of somatic musculature in Dasydytidae (Paucitubulatina, Gastrotricha)

Original Paper

Abstract

The musculature of two species of the gastrotrich taxon Dasydytidae, Dasydytes (Dasydytes) goniathrix and Haltidytes crassus, was investigated and described using phalloidin staining, confocal microscopy and computer-aided three-dimensional data analysis. Dasydytidae is a peculiar taxon of freshwater Gastrotricha, containing species that are characterized by different adaptations to a semiplanktonic lifestyle, a rather uncommon feature among primarily benthic Gastrotricha. Like other dasydytid species studied so far, D. goniathrix and H. crassus possess a system of movable cuticular spines with an associated system of somatic oblique and segmented lateral muscles. The presence of other somatic (dorsodermal muscles R1 and R2) and visceral muscles (musculi ventrales, m. ventrolaterales, m. dorsales, m. helicoidales) known from a wide range of gastrotrich species was confirmed. Regarded from a functional perspective, the earlier proposed antagonistic role of oblique muscles (as spine abductors) and segmented lateral muscles (as adductors) is questioned for the species studied herein. Alternatively, our structural and behavioral observations suggest that muscular spine abduction in D. goniathrix is brought about by synergistic contraction of the musculi obliqua and m. laterales, and a passive adduction due to muscle relaxation and elastic recoil of the trunk and cuticle. For H. crassus, we hypothesize active muscular spine abduction by contraction of the musculi obliqua plus the last segment of m. laterales accompanied by severe cuticle deformations close to the spine insertions. Adduction is achieved by cuticle reformation due to elasticity and increase in tissue pressure brought about by muscle action, possibly of enforced dorsodermal muscles. The newly obtained and published muscular data of further gastrotrich species were gathered in a species-character matrix. Based on this data set, a maximum parsimony analysis of representatives of the Dasydytidae has been conducted. According to this analysis, there are three well-supported monophyletic lineages within likewise monophyletic Dasydytidae. The first lineage comprises the taxa Anacanthoderma, Stylochaeta and Chitonodytes, the second comprises Dasydytes, Setopus and Ornamentula, and the third represents the taxon Haltidytes. Relationships between these clades could be resolved but are only weakly supported. The new phylogenetic hypothesis is used to reconstruct the ancestral character pattern and to infer possible evolutionary transformations within the Dasydytidae.

Keywords

Freshwater Gastrotricha Musculature cLSM 3D reconstruction Evolution Phylogeny 

Supplementary material

435_2012_152_MOESM1_ESM.pdf (11 kb)
Supplementary material 1 (PDF 11 kb)
435_2012_152_MOESM2_ESM.pdf (72 kb)
Supplementary material 2 (PDF 71 kb)

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–42Google Scholar
  2. Balsamo M, Todaro MA (2002) Gastrotricha. In: Rundle SD et al (eds) Freshwater Meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 45–61Google Scholar
  3. Balsamo M, d’Hondt J-L, Pierboni L, Grilli P (2009) Taxonomic and nomenclatural notes on freshwater Gastrotricha. Zootaxa 2158:1–19Google Scholar
  4. Hochberg R (2005) Musculature of the primitive gastrotrich Neodasys (Chaetonotida): functional adaptations to the interstitial environment and phylogenetic significance. Mar Biol 146:315–323CrossRefGoogle Scholar
  5. Hochberg R, Gurbuz OA (2007) Functional morphology of somatic muscles and anterolateral setae in Filinia novaezealandiae Shiel and Sanoamuang, 1993 (Rotifera). Zool Anz 246:11–22CrossRefGoogle Scholar
  6. Hochberg R, Gurbuz OA (2008) Comparative morphology of the somatic musculature in species of Hexarthra and Polyarthra (Rotifera, Monogononta): its function in appendage movement and escape behavior. Zool Anz 247:233–248CrossRefGoogle Scholar
  7. Hochberg R, Litvaitis MK (2000) Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. Biol Bull 198:299–305PubMedCrossRefGoogle Scholar
  8. Hochberg R, Litvaitis MK (2001a) A muscular double helix in gastrotricha. Zool Anz 240:61–68CrossRefGoogle Scholar
  9. Hochberg R, Litvaitis MK (2001b) The musculature of Draculiciteria tesselata (Chaetonotida, Paucitubulatina): implications for the evolution of dorsoventral muscles in Gastrotricha. Hydrobiologia 452:155–161CrossRefGoogle Scholar
  10. Hochberg R, Litvaitis MK (2001c) The muscular system of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zool Scripta 30:325–336CrossRefGoogle Scholar
  11. Hochberg R, Litvaitis MK (2001d) Functional morphology of muscles in Tetranchyroderma papii (Gastrotricha). Zoomorphology 121:37–43CrossRefGoogle Scholar
  12. Hochberg R, Litvaitis MK (2003) Organization of muscles in Chaetonotida Paucitubulatina (Gastrotricha). Meiofauna Mar 12:47–58Google Scholar
  13. Hummon WD (1974) Intertidal marine gastrotricha from Colombia. Bull Mar Sci 24:396–408Google Scholar
  14. Kånneby T (2011) New species and new records of freshwater Chaetonotida (Gastrotricha) from Sweden. Zootaxa 3115:29–55Google Scholar
  15. Kånneby T, Todaro MA, Jondelius U (2012) A phylogenetic approach to species delimitation in freshwater Gastrotricha from Sweden. Hydrobiologia 683:185–202CrossRefGoogle Scholar
  16. Kieneke A, Martínez Arbizu P, Riemann O (2008a) Body Musculature of Stylochaeta scirtetica Brunson, 1950 and Dasydytes (Setodytes) tongiorgii (Balsamo, 1982) (Gastrotricha: Dasydytidae): a functional approach. Zool Anz 247:147–158CrossRefGoogle Scholar
  17. Kieneke A, Riemann O, Ahlrichs WH (2008b) Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. Zool Scripta 37:429–460CrossRefGoogle Scholar
  18. Kisielewski J (1991) Inland-water Gastrotricha from Brazil. Ann Zool 43(2):1–168Google Scholar
  19. Leasi F, Todaro MA (2008) The muscular system of Musellifer delamarei (Renaud-Mornant, 1968) and other chaetonotidans with implications for the phylogeny and systematisation of the Paucitubulatina (Gastrotricha). Biol J Linn Soc 94:379–398CrossRefGoogle Scholar
  20. Leasi F, Todaro MA (2009) Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Mar Biol 156:1335–1346CrossRefGoogle Scholar
  21. Leasi F, Rothe BH, Schmidt-Rhaesa A, Todaro MA (2006) The musculature of three species of gastrotrichs surveyed with confocal laser scanning microscopy (CLSM). Acta Zool 87:171–180CrossRefGoogle Scholar
  22. Lee D-C, Bryant HN (1999) A reconsideration of the coding of inapplicable characters: assumptions and problems. Cladistics 15:373–378CrossRefGoogle Scholar
  23. Maddison W P, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 (http://mesquiteproject.org)
  24. Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extendible file format for systematic information. Syst Biol 46:590–621PubMedCrossRefGoogle Scholar
  25. Melone G, Ricci C (1995) Rotatory apparatus in Bdelloids. Hydrobiologia 313/314:91–98Google Scholar
  26. Page RDM (2001) NDE—nexus data editor version 0.5.0 [Computer software]. Available via http://taxonomy.zoology.gla.ac.uk/rod/rod.html
  27. Rasband WS (1997–2007) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/
  28. Remane A (1936) Gastrotricha. In: Bronn HG (ed) Klassen und Ordnungen des Tierreiches, 4. Band: Vermes II. Abteilung Askelminthes, Trochhelminthes. Akademische Verlagsgesellschaft, Leipzig, pp 1–242Google Scholar
  29. Rieger R, Tyler S (1979) The homology theorem in ultrastructural research. Am Zool 19:655–664Google Scholar
  30. Rothe BH, Schmidt-Rhaesa A, Kieneke A (2011a) The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy–evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology 130:51–84CrossRefGoogle Scholar
  31. Rothe BH, Kieneke A, Schmidt-Rhaesa A (2011b) The nervous system of Xenotrichula intermedia and X. velox (Gastrotricha: Paucitubulatina) by means of immunohistochemistry (IHC) and TEM. Meiofauna Mar 19:71–88Google Scholar
  32. Ruppert EE (1991) Gastrotricha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, Aschelminthes. Wiley, New York, pp 41–109Google Scholar
  33. Schwank P (1990) Gastrotricha. In: Schworbel J, Zwick P (eds) Süßwasserfauna von Mitteleuropa, Band 3, Teil 1. Gustav Fischer, Stuttgart, pp 1–252Google Scholar
  34. Strong EE, Lipscomb D (1999) Character coding and inapplicable data. Cladistics 15:363–371CrossRefGoogle Scholar
  35. Swofford DL (2002) PAUP*—phylogenetic analysis using parsimony (*and Other Methods). Version 4. [Computer software and manual]. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  36. Todaro MA (2012) Gastrotricha World Portal, webpage, last update 04 Jan 2012 (http://www.gastrotricha.unimore.it/)
  37. Wägele JW (2005) Foundations of phylogenetic systematics. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  38. Wanninger A (2007) The application of confocal microscopy and 3D imaging software in functional, evolutionary, and developmental zoology: reconstructing myo- and neurogenesis in space and time. In: Mendez-Vilas A, Dias J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, pp 353–361Google Scholar
  39. Zelinka K (1889) Die Gastrotrichen. Eine monographische Darstellung ihrer Anatomie, Biologie und Systematik. Z wiss Zool 49:209–384Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer WilhelmshavenSenckenberg Research Institute and Natural History MuseumWilhelmshavenGermany

Personalised recommendations