Zoomorphology

, Volume 131, Issue 1, pp 69–78 | Cite as

Sexual dimorphism in the skull geometry of newt species of Ichthyosaura, Triturus and Lissotriton (Salamandridae, Caudata, Amphibia)

Original Paper

Abstract

In this study, we applied geometric morphometrics to explore variations in the level and pattern of sexual size dimorphism (SSD) and sexual shape dimorphism (SShD) of the ventral cranium in three different Modern Eurasian newt taxa (Ichthyosaura alpestris, Triturus species group and Lissotriton vulgaris). The ventral cranium is the part of the skull that is more directly related to foraging and feeding. Our results indicate that the level and pattern of sexual dimorphism in the ventral cranium differ among Modern Eurasian newt taxa. Regarding sexual dimorphism in skull size, Ichthyosaura alpestris and Triturus species show female-biased patterns (females are larger than males), whereas Lissotriton vulgaris appears to be non-dimorphic in skull size. In I. alpestris and Triturus species, SShD is mostly absent, whereas in L. vulgaris, SShD is more pronounced. A high level of variation between populations in both SSD and SShD indicates that local conditions may have a profound effect on the magnitude and direction of sexual dimorphism. The significant sexual differences in ventral cranium size and shape indicate possible subtle intersexual differences in ecological demands due to diet specialisation, in spite of similar general ecological settings.

Keywords

Geometric morphometrics Ventral cranium Size and shape Allometry 

Notes

Acknowledgments

We thank Andrea Cardini and an anonymous reviewer for comments that led to substantial improvements in the paper. This study was supported financially by the Serbian Ministry of Education and Science, grant no. 173043.

References

  1. Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am Nat 149:540–562CrossRefGoogle Scholar
  2. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16CrossRefGoogle Scholar
  3. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  4. Babik W, Branicki W, Crnobrnja-Isailović J, Cogălniceanu D, Sas I, Olgun K, Poyarkov NA, Garcia-París M, Arntzen JW (2005) Phylogeography of two European newt species: discordance between mtDNA and morphology. Mol Ecol 14:2475–2491PubMedCrossRefGoogle Scholar
  5. Bookstein FL (1991) Morphometric tools for landmarks data: geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  6. Bruner E, Constantini D, Fanfani A, Dell’Omo G (2005) Morphological variation and sexual dimorphism of the cephalic scales in Lacerta billineata. Acta Zool 86:245–254CrossRefGoogle Scholar
  7. Butler MA (2007) Vive le difference! Sexual dimorphism and adaptive patterns in lizards of the genus Anolis. ICB 47:272–284Google Scholar
  8. Butler MA, Losos JB (2002) Mutivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecol Monog 72:541–559CrossRefGoogle Scholar
  9. Cardini A, Elton S (2008) Variation in guenon skulls (II): sexual dimorphism. J Hum Evol 54:638–647PubMedCrossRefGoogle Scholar
  10. Denoël M (2004) Feeding performance in heterochronic alpine newts is consistent with trophic niche and maintenance of polymorphism. Ethology 110:127–136CrossRefGoogle Scholar
  11. Denoël M, Schabetsberger R, Joly P (2004) Trophic specialisations in alternative heterochronic morphs. Naturwissenschaften 91:81–84PubMedCrossRefGoogle Scholar
  12. Fairbairn DJ, Blanckenhorn WU, Szekely T (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, OxfordGoogle Scholar
  13. Gabor CR, Halliday TR (1997) Sequential mate choice by multiply mating smooth newt: females become more choosy. Behav Ecol 8:162–166CrossRefGoogle Scholar
  14. Gabor CR, Krenz JD, Jaeger RG (2000) Female choice, male interference, and sperm precedence in the red-spotted newt. Behav Ecol 11:115–124CrossRefGoogle Scholar
  15. Gidaszewski NA, Baylac M, Klingenberg CP (2009) Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster species. BMC Evol Biol 9:110PubMedCrossRefGoogle Scholar
  16. Griffiths RA (1986) Feeding niche overlap and food selection in smooth and palmate newts, Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J Anim Ecol 55:201–214CrossRefGoogle Scholar
  17. Griffiths RA (1987) Microhabitat and seasonal niche dynamics of smooth and palmate newts, Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J Anim Ecol 56:441–451CrossRefGoogle Scholar
  18. Griffiths RA (1996) Newts and salamanders of Europe. Poyser, LondonGoogle Scholar
  19. Hallgrímsson B, Hall BK (2005) Variation: a central concept in biology. Elsevier Academic Press, New YorkGoogle Scholar
  20. Halliday TR (1977) The courtship of European newts. An evolutionary perspective. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum, New York, pp 185–232Google Scholar
  21. Herler J, Kerschbaumer M, Mitteroecker P, Posti L, Sturmbauer C (2010) Sexual dimorphism and population divergence in the Lake Tanganyika cichlid fish genus Tropheus. Front Zool 7:4PubMedCrossRefGoogle Scholar
  22. Hoeck PEA, Garner TWJ (2007) Female alpine newts (Triturus alpestris) mate initially with males signalling fertility benefits. Biol J Linn Soc 91:483–491CrossRefGoogle Scholar
  23. Iordansky N (1996) Evolution of the musculature of the jaw apparatus in the Amphibia. Adv Amphib Res Former Soviet Union 1:3–26Google Scholar
  24. Ivanović A, Sotiropoulos K, Furtula M, Džukić G, Kalezić ML (2008a) Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula. J Zool Syst Evol Res 46:381–387CrossRefGoogle Scholar
  25. Ivanović A, Sotiropoulos K, Vukov TD, Eleftherakos K, Džukić G, Polymeni RM, Kalezić ML (2008b) Cranial shape variation and molecular phylogenetic structure of crested newts (Triturus cristatus superspecies: Caudata, Salamandridae) in the Balkans. Biol J Linn Soc 95:348–360CrossRefGoogle Scholar
  26. Ivanović A, Sotiropoulos K, Džukić G, Kalezić ML (2009) Skull size and shape variation vs. molecular phylogeny: study case of the alpine newts (Mesotriton alpestris, Salamandridae) from the Balkan Peninsula. Zoomorphology 128:157–167CrossRefGoogle Scholar
  27. Jamniczky HA, Boughner JC, Rolian C, Gonzalez PN, Powell CD, Schmidt EJ, Parsons TE, Bookstein FL, Hallgrímsson B (2010) Rediscovering Waddington in the post-genomic age. BioEssays 32:553–558PubMedCrossRefGoogle Scholar
  28. Jehle R, Bouma P, Sztatecsny M, Arntzen JW (2000) High aquatic niche overlap in the newts Triturus cristatus and T. marmoratus (Amphibia, Urodela). Hydrobiologia 437:149–155CrossRefGoogle Scholar
  29. Kaliontzopoulou A, Carretero MA, Llorente GA (2008) Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: joining linear and geometric morphometrics. Biol J Linn Soc 93:111–124CrossRefGoogle Scholar
  30. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefGoogle Scholar
  31. Kupfer A (2007) Sexual size dimorphism in amphibians: and overview. In: Fairbairn DJ, Blanckenhorn WU, Szekely T (eds) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford, pp 50–60Google Scholar
  32. Ljubisavljević K, Urošević A, Aleksić I, Ivanović A (2010) Sexual dimorphism of skull shape in lacertid lizard species (Podarcis spp., Dalmatolacerta sp., Dinarolacerta sp.) revealed by geometric morphometrics. Zoology 113:168–174PubMedCrossRefGoogle Scholar
  33. Lynch JM, Conroy JWH, Kitchener AC, Jefferies DJ, Hayden TJ (1996) Variation in cranial form and sexual dimorphism among five European populations of the otter (Lutra lutra). J Zool Lond 238:81–96CrossRefGoogle Scholar
  34. Malmgren JC, Thollesson M (1999) Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. vulgaris (Caudata: Salamandridae). J Zool Lond 249:127–136CrossRefGoogle Scholar
  35. Raxworthy CJ (1990) A review of the smooth newt (Triturus vulgaris) subspecies, including an identification key. Herp Jour 1:481–492Google Scholar
  36. Rohlf FJ (2005) tpsDig program, version 2.04, Ecology and evolution, SUNY at Stony Brook. Available at http://life.bio.sunysb.edu/morph/. Accessed 02. April 2011
  37. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59Google Scholar
  38. Schoener TW (1967) The ecological significance of sexual dimorphism in size of the lizard Anolis conspersus. Science 155:474–478PubMedCrossRefGoogle Scholar
  39. Schoener TW (1977) Competition and the niche. In: Gans C, Tinkle DW (eds) Biology of the reptilia, vol 7. Academic Press, London, pp 35–136Google Scholar
  40. Schutz H, Polly PD, Kreiger JD, Guralnick RP (2009) Differential sexual dimorphism: size and shape in the cranium and pelvis of grey foxes (Urocyon). Biol J Linn Soc 96:339–353CrossRefGoogle Scholar
  41. Schwarzkopf L (2005) Sexual dimorphism in body shape without sexual dimorphism in body size. Herpetologica 61:116–123CrossRefGoogle Scholar
  42. Sheets HD (2003) IMP—integrated morphometrics package. Buffalo: Department of Physics, Canisius College. Available at http://www3.canisius.edu/_sheets/morphsoft.html
  43. Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quart Rev Biol 64:419–461PubMedCrossRefGoogle Scholar
  44. Sotiropoulos K, Eleftherakos K, Džukić G, Kalezić ML, Legakis A, Polymeni RM (2007) Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol Phylogenet Evol 45:211–226PubMedCrossRefGoogle Scholar
  45. Steinfartz S, Vicario S, Arntzen JW, Caccone A (2007) A Bayesian approach on molecules, morphology and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Biol (Mol Devol Evol) 308B:139–162CrossRefGoogle Scholar
  46. Vidal M, Ortiz JC, Ramirez CC, Lamborot M (2005) Intraspecific variation in morphology and sexual dimorphism in Liolaemus tenuis (Tropiduridae). Amphibia-Reptilia 26:343–351CrossRefGoogle Scholar
  47. Webb TJ, Freckleton RP (2007) Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS One 9:1–10Google Scholar
  48. Wielstra B, Arntzen JW (2011) Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 11:162PubMedCrossRefGoogle Scholar
  49. Wielstra B, Espregueira Themudo G, Güçlü O, Olgun K, Poyarkov NA, Arntzen JW (2010) Cryptic crested newt diversity at the Eurasian transition: the mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol Phylogenet Evol 56:888–896PubMedCrossRefGoogle Scholar
  50. Young KA (2005) Life-history variation and allometry for sexual size dimorphism in pacific salmon and trout. Proc R Soc B 272:167–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Faculty of Biology, Institute for ZoologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia

Personalised recommendations