Zoomorphology

, Volume 130, Issue 4, pp 227–254 | Cite as

Application of magnetic resonance imaging in zoology

  • Alexander Ziegler
  • Martin Kunth
  • Susanne Mueller
  • Christian Bock
  • Rolf Pohmann
  • Leif Schröder
  • Cornelius Faber
  • Gonzalo Giribet
Review Article

Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging technique that today constitutes one of the main pillars of preclinical and clinical imaging. MRI’s capacity to depict soft tissue in whole specimens ex vivo as well as in vivo, achievable voxel resolutions well below (100 μm)3, and the absence of ionizing radiation have resulted in the broad application of this technique both in human diagnostics and studies involving small animal model organisms. Unfortunately, MRI systems are expensive devices and have so far only sporadically been used to resolve questions in zoology and in particular in zoomorphology. However, the results from two recent studies involving systematic scanning of representative species from a vertebrate group (fishes) as well as an invertebrate taxon (sea urchins) suggest that MRI could in fact be used more widely in zoology. Using novel image data derived from representative species of numerous higher metazoan clades in combination with a comprehensive literature survey, we review and evaluate the potential of MRI for systematic taxon scanning. According to our results, numerous animal groups are suitable for systematic MRI scanning, among them various cnidarian and arthropod taxa, brachiopods, various molluscan taxa, echinoderms, as well as all vertebrate clades. However, various phyla in their entirety cannot be considered suitable for this approach mainly due to their small size (e.g., Kinorhyncha) or their unfavorable shape (e.g., Nematomorpha), while other taxa are prone to produce artifacts associated either with their biology (e.g., Echiura) or their anatomy (e.g., Polyplacophora). In order to initiate further uses of MRI in zoology, we outline the principles underlying various applications of this technique such as the use of contrast agents, in vivo MRI, functional MRI, as well as magnetic resonance spectroscopy. Finally, we discuss how future technical developments might shape the use of MRI for the study of zoological specimens.

Keywords

MRI High-throughput Noninvasive Metazoa Three-dimensional NMR 

Abbreviations

2D

Two-dimensional

3D

Three-dimensional

BBB

Blood–brain barrier

BOLD

Blood oxygenation level-dependent

CA

Contrast agent

cLSM

Confocal laser scanning microscopy

CSI

Chemical shift imaging

CT

Computed tomography

DTI

Diffusion tensor imaging

DWI

Diffusion-weighted imaging

FLASH

Fast low-angle shot

FMNH

Field Museum of Natural History

fMRI

Functional magnetic resonance imaging

FOV

Field of view

FR

RARE factor

FSPGR

Fast spoiled gradient echo

MEMRI

Manganese-enhanced magnetic resonance imaging

MR

Magnetic resonance

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

NA

Average number

NMR

Nuclear magnetic resonance

OPT

Optical projection tomography

PET

Positron emission tomography

RARE

Rapid acquisition with relaxation enhancement

SE

Spin echo

SIO

Scripps Institution of Oceanography

SNR

Signal-to-noise ratio

TA

Acquisition time

TE

Echo time

TR

Repetition time

TSE

Turbo spin echo

μCT

Micro-computed tomography

ZMB

Zoologisches Museum Berlin

ZMH

Zoologisches Museum Hamburg

References

  1. Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S (2009) Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162:1339–1350PubMedCrossRefGoogle Scholar
  2. Ardenkjar-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH (2003) Increase in signal-to-noise ratio of >10, 000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163CrossRefGoogle Scholar
  3. Assheuer J, Sager M (1997) MRI and CT atlas of the dog. Blackwell Science, BerlinGoogle Scholar
  4. Baker M (2010) The whole picture. Nature 463:977–980PubMedCrossRefGoogle Scholar
  5. Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22:834–842PubMedCrossRefGoogle Scholar
  6. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254CrossRefGoogle Scholar
  7. Belton PS, Gil AM, Webb GA, Rutledge D (2003) Magnetic resonance in food science: latest developments. RSC Publishing, CambridgeCrossRefGoogle Scholar
  8. Belton PS, Engelsen SB, Jakobsen HJ, Amin MHG, van den Berg F (2005) Magnetic resonance in food science: the multivariate challenge. RSC Publishing, CambridgeCrossRefGoogle Scholar
  9. Benveniste H, Blackband SJ (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420PubMedCrossRefGoogle Scholar
  10. Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5:536–544PubMedCrossRefGoogle Scholar
  11. Berthold P, Elverfeldt D, Fiedler W, Hennig J, Kaatz M, Querner U (2001) Magnetic resonance imaging and spectroscopy (MRI, MRS) of seasonal patterns in body composition: a methodological pilot study in white storks (Ciconia ciconia). J Ornithol 142:63–72CrossRefGoogle Scholar
  12. Blackband SJ, Stoskopf MK (1990) In vivo nuclear magnetic resonance imaging and spectroscopy of aquatic organisms. Magn Reson Imag 8:191–198CrossRefGoogle Scholar
  13. Blamire AM (2008) The technology of MRI–the next 10 years? Br J Radiol 81:601–617PubMedCrossRefGoogle Scholar
  14. Bock C, Frederich M, Wittig RM, Pörtner HO (2001a) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imag 19:1113–1124CrossRefGoogle Scholar
  15. Bock C, Sartoris FJ, Wittig RM, Pörtner HO (2001b) Temperature dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in vivo NMR study. Polar Biol 24:869–874CrossRefGoogle Scholar
  16. Bock C, Sartoris FJ, Pörtner HO (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imag 20:165–172CrossRefGoogle Scholar
  17. Bock C, Lurmann G, Pörtner HO (2007) Temperature and oxygenation dependence of haemoglobin and hemocyanin relaxation times at 9.4 T. Proc Int Soc Magn Reson Med 15:2749Google Scholar
  18. Boistel R, Swoger J, Krzic U, Fernandez V, Gillet B, Reynaud EG (2011) The future of three-dimensional microscopic imaging in marine biology. Marine Ecol. doi:10.1111/j.1439-0485.2011.00442.x
  19. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508:333–348PubMedCrossRefGoogle Scholar
  20. Bringmann G, Wolf K, Lanz T, Haase A, Hiort J, Proksch P, Müller WEG (1999) Direct demonstration of spatial water distribution in the sponge Suberites domunucla by in vivo NMR imaging. Mar Ecol Prog Ser 189:307–310CrossRefGoogle Scholar
  21. Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132PubMedCrossRefGoogle Scholar
  22. Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40PubMedCrossRefGoogle Scholar
  23. Budd GE, Olsson L (2007) Editorial: a renaissance for evolutionary morphology. Acta Zool (Stockholm) 88:1CrossRefGoogle Scholar
  24. Butcher PA, Broadhurst MK, Hall KC, Cullis BR, Nicoll RG (2009) Scale loss and mortality in angled-and-released Eastern sea garfish (Hyporhamphus australis). ICES J Marine Sci 67:522–529CrossRefGoogle Scholar
  25. Chanet B, Fusellier M, Baudet J, Madec S, Guintard C (2009) No need to open the jar: a comparative study of magnetic resonance imaging results on fresh and alcohol preserved common carps (Cyprinus carpio (L. 1758), Cyprinidae, Teleostei). Comptes Rendus de Biol 332:413–419CrossRefGoogle Scholar
  26. Chudek JA, Crook AME, Hubbard SF, Hunter G (1996) Nuclear magnetic resonance microscopy of the development of the parasitoid wasp Venturia canescens within its host moth Plodia interpunctella. Magn Reson Imag 14:679–686CrossRefGoogle Scholar
  27. Conner WE, Johnson GA, Coffer GP, Dittrich K (1988) Magnetic resonance microscopy—in vivo sectioning of a developing insect. Experientia 44:11–12PubMedCrossRefGoogle Scholar
  28. Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52:196–204PubMedGoogle Scholar
  29. Corfield JR, Wild JM, Cowan BR, Parsons S, Kubke MF (2008) MRI of postmortem specimens of endangered species for comparative brain anatomy. Nat Protoc 3:597–605PubMedCrossRefGoogle Scholar
  30. Czisch M, Coppack T, Berthold P, Auer DP (2001) In vivo magnetic resonance imaging of the reproductive organs in a passerine bird species. J Avian Biol 32:278–281CrossRefGoogle Scholar
  31. Davenel A, Quellec S, Pouvreau S (2006) Noninvasive characterization of gonad maturation and determination of the sex of Pacific oysters by MRI. Magn Reson Imag 24:1103–1110CrossRefGoogle Scholar
  32. Davenel A, González R, Suquet M, Quellec S, Robert R (2010) Individual monitoring of gonad development in the European flat oyster Ostrea edulis by in vivo magnetic resonance imaging. Aquaculture 307:165–169CrossRefGoogle Scholar
  33. De Groof G, Verhoye M, van Meir V, Tindemans I, Leemans A, van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763PubMedCrossRefGoogle Scholar
  34. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedCrossRefGoogle Scholar
  35. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sorensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172CrossRefGoogle Scholar
  36. Elliott I, Skerritt G (2010) Handbook of small animal MRI. Wiley-Blackwell, OxfordGoogle Scholar
  37. Endo H, Yamagiwa D, Arishima K, Yamamoto M, Sasaki M, Hayashi Y, Kamiya T (1999) MRI examination of trachea and bronchi in the Ganges river dolphin (Platanista gangetica). J Vet Med Sci 61:1137–1141PubMedCrossRefGoogle Scholar
  38. Farhat IA, Belton PS, Webb GA (2007) Magnetic resonance in food science: from molecules to man. RSC Publishing, CambridgeCrossRefGoogle Scholar
  39. Favila ME, Fresneau D, Gonord P, Ruaud JP (2004) Nuclear magnetic resonance microscopy of the internal structure of the carrion rolling scarab Canthon cyanellus cyanellus (Scarabaeidae: Scarabaeinae). Coleopt Bull 58:1125–1131 Google Scholar
  40. Fernández M, Bock C, Pörtner HO (2000) The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecol Lett 3:487–494CrossRefGoogle Scholar
  41. Forbes JG, Morris HD, Wang K (2006) Multimodal imaging of the sonic organ of Porichthys notatus, the singing midshipman fish. Magn Reson Imag 24:321–331CrossRefGoogle Scholar
  42. Forbes SC, Slade JM, Francis RM, Meyer RA (2009) Comparison of oxidative capacity among leg muscles in humans using gated 31P 2-D chemical shift imaging. NMR Biomed 22:1063–1071PubMedGoogle Scholar
  43. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93PubMedCrossRefGoogle Scholar
  44. Fresneau D, Dantas de Araujo C, Kan SK, Gonord P, Jallon JM (1991) Premières tentatives d’imagerie RMN sur des insectes. Actes des Colloques Insectes Sociaux 7:195–199Google Scholar
  45. Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMedCrossRefGoogle Scholar
  46. Garwood M, De la Barre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177PubMedCrossRefGoogle Scholar
  47. Gassner G, Lohmann JAB (1987) Combined proton NMR imaging and spectral analysis of locust embryonic development. Proc Natl Acad Sci USA 84:5297–5300PubMedCrossRefGoogle Scholar
  48. Gavin PR, Bagley RS (2010) Practical small animal MRI. Wiley-Blackwell, OxfordGoogle Scholar
  49. Geoghegan IE, Chudek JA, Mackay RL, Lowe C, Moritz S, McNicol RJ, Birch ANE, Hunter G, Majerus MEN (2000) Study of anatomical changes in Coccinella septempunctata (Coleoptera: Coccinellidae) induced by diet and by infection with the larva of Dinocampus coccinellae (Hymenoptera: Braconidae) using magnetic resonance microimaging. Eur J Entomol 97:457–461Google Scholar
  50. Giribet G (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool (Stockholm) 91:11–19CrossRefGoogle Scholar
  51. Glover P, Mansfield P (2002) Limits to magnetic resonance microscopy. Rep Prog Phys 65:1489–1511CrossRefGoogle Scholar
  52. Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med 46:1–5PubMedCrossRefGoogle Scholar
  53. Goodman BA, Gordon SC, Chudek JA, Hunter G, Woodford JAT (1995) Nuclear magnetic resonance microscopy as a non-invasive tool to study the development of lepidopteran pupae. J Insect Physiol 41:419–424CrossRefGoogle Scholar
  54. Gozansky EK, Ezell EL, Budelmann BU, Quast MJ (2003) Magnetic resonance histology: in situ single cell imaging of receptor cells in an invertebrate (Lolliguncula brevis, Cephalopoda) sense organ. Magn Reson Imag 21:1019–1022CrossRefGoogle Scholar
  55. Granot J (1986) Selected volume excitation using stimulated echoes (VEST): application to spatially localized spectroscopy and imaging. J Magn Reson 70:488–492Google Scholar
  56. Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, Webb AG, Blackband SJ (2000) NMR spectroscopy of single neurons. Magn Reson Med 44:19–22PubMedCrossRefGoogle Scholar
  57. Gujonsdottir M, Belton PS, Webb GA (2009) Magnetic resonance in food science: challenges in a challenging world. RSC Publishing, CambridgeGoogle Scholar
  58. Haddad D, Schaupp F, Brandt R, Manz G, Menzel R, Haase A (2004) NMR imaging of the honeybee brain. J Insect Sci 4:7PubMedGoogle Scholar
  59. Hallock KJ (2008) Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta. J Insect Sci 8:10 Google Scholar
  60. Hart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FLW (2003) Magnetic resonance imaging in entomology: a critical review. J Insect Sci 3:5PubMedGoogle Scholar
  61. Herberholz J, Mims CJ, Zhang X, Hu X, Edwards DH (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550PubMedCrossRefGoogle Scholar
  62. Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H (2008) Stereotactic biopsy in gliomas guided by 3-Tesla 1H-chemical-shift imaging of choline. Stereotact Funct Neurosurg 86:300–307PubMedCrossRefGoogle Scholar
  63. Holliman FM, Davis D, Bogan AE, Kwak TJ, Cope WG, Levine JF (2008) Magnetic resonance imaging of live freshwater mussels (Unionidae). Invertebr Biol 127:396–402CrossRefGoogle Scholar
  64. Hopkins WD, Pilcher DW, MacGregor L (2000) Sylvian fissure asymmetries in nonhuman primates revisited: a comparative MRI study. Brain Behav Evol 56:293–299PubMedCrossRefGoogle Scholar
  65. Hörnschemeyer T, Goebbels J, Weidemann G, Faber C, Haase A (2006) The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata. Eur J Entomol 103:409–423Google Scholar
  66. Hsu EW, Aiken NR, Blackband SJ (1996) Nuclear magnetic resonance microscopy of single neurons under hypotonic perturbation. Am J Physiol 271:C1895–C1900PubMedGoogle Scholar
  67. Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073CrossRefGoogle Scholar
  68. Jakob P (2011) Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler BJ, Hauff P (eds) Small animal imaging. Basics and practical guide. Springer, Berlin, pp 151–164Google Scholar
  69. Jasanoff A (2005) Functional MRI using molecular imaging agents. Trends Neurosci 28:120–126 Google Scholar
  70. Jasanoff A, Sun PZ (2002) In vivo magnetic resonance microscopy of brain structure in unanesthetized flies. J Magn Reson 158:79–85PubMedCrossRefGoogle Scholar
  71. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25:356–369PubMedGoogle Scholar
  72. Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439PubMedCrossRefGoogle Scholar
  73. Kaufman JA, Ahrens ET, Laidlaw DH, Zhang S, Allman JM (2005) Anatomical analysis of an Aye–Aye brain (Daubentonia madagascariensis, Primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging. Anat Rec A 287:1026–1037Google Scholar
  74. Kiessling F, Pichler BJ, Hauff P (2011) Small animal imaging. Basics and practical guide. Springer, BerlinGoogle Scholar
  75. Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22:303–309PubMedCrossRefGoogle Scholar
  76. Kuoni W, Augustiny N, Rübel A (1993) Application of magnetic resonance imaging in reptile medicine. MAGMA 1:61–63CrossRefGoogle Scholar
  77. Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring. Am J Physiol Regul Integr Comp Physiol 287:R902–R910PubMedCrossRefGoogle Scholar
  78. Lannig G, Cherkasov AS, Pörtner HO, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:1338–1346CrossRefGoogle Scholar
  79. Lauridsen H, Hansen K, Wang T, Agger P, Andersen JL, Knudsen PS, Rasmusseun AS, Uhrenholt L, Pedersen M (2011) Inside out: modern imaging techniques to reveal animal anatomy. PLoS One 6:e17879PubMedCrossRefGoogle Scholar
  80. Lazar N (2008) The statistical analysis of functional MRI data. Springer, BerlinGoogle Scholar
  81. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  82. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 24:478–488CrossRefGoogle Scholar
  83. Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Kang D, Lee W, Cheong C (2007) In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards. Differentiation 75:84–92PubMedCrossRefGoogle Scholar
  84. Lee H, Tikunov A, Stoskopf MK, Macdonald JM (2010) Applications of chemical shift imaging to marine sciences. Marine Drugs 8:2369–2383PubMedCrossRefGoogle Scholar
  85. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–388PubMedCrossRefGoogle Scholar
  86. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159PubMedCrossRefGoogle Scholar
  87. Lohmann JAB, Gassner G (1987) Proton NMR in vivo imaging: a tool for studying embryo development of small organisms. Ann NY Acad Sci 508:435–436CrossRefGoogle Scholar
  88. Lohmann JAB, Ratcliffe RG (1988) Prospects for NMR imaging in the study of biological morphogenesis. Experientia 44:666–672CrossRefGoogle Scholar
  89. Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRefGoogle Scholar
  90. Mapelli M, Greco F, Gussoni M, Consonni R, Zetta L (1997) Application of NMR microscopy to the morphological study of the silkworm, Bombyx mori, during its metamorphosis. Magn Reson Imag 15:693–700CrossRefGoogle Scholar
  91. Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414PubMedCrossRefGoogle Scholar
  92. Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429PubMedCrossRefGoogle Scholar
  93. Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003a) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347PubMedCrossRefGoogle Scholar
  94. Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003b) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76PubMedCrossRefGoogle Scholar
  95. Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec A 281:1256–1263CrossRefGoogle Scholar
  96. Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262PubMedGoogle Scholar
  97. Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152Google Scholar
  98. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11PubMedCrossRefGoogle Scholar
  99. Michaelis T, Watanabe T, Natt O, Boretius S, Frahm J, Utz S, Schachtner J (2005) In vivo 3D MRI of insect brain: cerebral development during metamorphosis of Manduca sexta. Neuroimage 24:596–602PubMedCrossRefGoogle Scholar
  100. Mietchen D, Keupp H, Manz B, Volke F (2005) Non-invasive diagnostics in fossils—magnetic resonance imaging of pathological belemnites. Biogeosciences 2:133–140CrossRefGoogle Scholar
  101. Mietchen D, Aberhan M, Manz B, Hampe O, Mohr B, Neumann C, Volke F (2008a) Three-dimensional magnetic resonance imaging of fossils across taxa. Biogeosciences 5:25–41CrossRefGoogle Scholar
  102. Mietchen D, Manz B, Volke F, Storey K (2008b) In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 12:e3826Google Scholar
  103. Modo M, Bulte JWH (2011) Magnetic resonance neuroimaging. Methods and protocols. Springer, BerlinCrossRefGoogle Scholar
  104. Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759PubMedCrossRefGoogle Scholar
  105. Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41PubMedCrossRefGoogle Scholar
  106. Murray RC (2011) Equine MRI. Blackwell-Wiley, OxfordGoogle Scholar
  107. Natt O, Frahm J (2005) In vivo magnetic resonance imaging: insights into structure and function of the central nervous system. Meas Sci Technol 16:R17–R36CrossRefGoogle Scholar
  108. Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ (2002) A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J Exp Biol 205:3177–3206PubMedGoogle Scholar
  109. Nott KP, Evans SD, Hall LD (1999) Quantitative magnetic resonance imaging of fresh and frozen-thawed trout. Magn Reson Imag 17:445–455CrossRefGoogle Scholar
  110. Novakovic VA, Sutton GP, Neustadter DM, Beer RD, Chiel HJ (2006) Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J Comp Physiol A 192:857–870CrossRefGoogle Scholar
  111. Null B, Liu CW, Hedehus M, Conolly S, Davis RW (2008) High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla. PLoS One 3:e2817Google Scholar
  112. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  113. Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294Google Scholar
  114. Perry CN, Cartamil DP, Bernal D, Sepulveda CA, Theilmann RJ, Graham JB, Frank LR (2007) Quantification of red myotomal muscle volume and geometry in the shorfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1-weighted magnetic resonance imaging. J Morphol 268:284–292PubMedCrossRefGoogle Scholar
  115. Petiet A, Hedlund L, Johnson GA (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imag 25:1192–1198CrossRefGoogle Scholar
  116. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906PubMedCrossRefGoogle Scholar
  117. Pohlmann A, Möller M, Decker H, Schreiber WG (2007) MRI of tarantulas: morphological and perfusion imaging. Magn Reson Imag 25:129–135CrossRefGoogle Scholar
  118. Pohmann R, von Kienlin M, Haase A (1997) Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson 129:145–160PubMedCrossRefGoogle Scholar
  119. Poirier C, Vellema M, Verhoye M, van Meir V, Wild JM, Balthazart J, van der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6PubMedCrossRefGoogle Scholar
  120. Pouvreau S, Rambeau M, Cochard JC, Robert R (2006) Investigation of marine bivalve morphology by in vivo MR imaging: first anatomical results of a promising technique. Aquaculture 259:415–423CrossRefGoogle Scholar
  121. Price WS, Kobayashi A, Ide H, Natori S, Arata Y (1999) Visualizing the postembryonic development of Sarcophaga peregrina (flesh fly) by NMR microscopy. Physiol Entomol 24:386–390CrossRefGoogle Scholar
  122. Quast MJ, Neumeister H, Ezell EL, Budelmann BU (2001) MR microscopy of cobalt-labeled nerve cells and pathways in an invertebrate brain (Sepia officinalis, Cephalopoda). Magn Reson Med 45:575–579PubMedCrossRefGoogle Scholar
  123. Raiti P, Haramati N (1997) Magnetic resonance imaging and computerized tomography of a gravid leopard tortoise (Geochelone pardalis pardalis) with metabolic bone disease. J Zoo Wildl Med 28:189–197PubMedGoogle Scholar
  124. Rasmussen AS, Lauridsen H, Laustsen C, Jensen BG, Pedersen SF, Uhrenholt L, Boel LWT, Uldbjerg N, Wang T, Pedersen M (2010) High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol 10:3PubMedCrossRefGoogle Scholar
  125. Renou JP, Belton PS, Webb GA (2011) Magnetic resonance in food science: an exciting future. RSC Publishing, CambridgeGoogle Scholar
  126. Ridgway S, Houser D, Finneran J, Carder D, Keogh M, van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910PubMedCrossRefGoogle Scholar
  127. Rogers BL, Lowe CG, Fernández-Juricic E, Frank LR (2008) Utilizing magnetic resonance imaging (MRI) to assess the effects of angling-induced barotrauma on rockfish (Sebastes). Can J Fish Aquac Sci 65:1245–1249CrossRefGoogle Scholar
  128. Rowe T, Frank LR (2011) The disappearing third dimension. Science 331:712–714PubMedCrossRefGoogle Scholar
  129. Rubinsky B, Wong STS, Hong JS, Gilbert J, Roos M, Storey KB (1994a) 1H magnetic resonance imaging of freezing and thawing in freeze-tolerant frogs. Am J Physiol 266:R1771–R1777PubMedGoogle Scholar
  130. Rubinsky B, Hong JS, Storey KB (1994b) Freeze tolerance in turtles: visual analysis by microscopy and magnetic resonance imaging. Am J Physiol 267:R1078–R1088PubMedGoogle Scholar
  131. Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA (2009) Evidence for cranial endothermy in the opah (Lampris guttatus). J Exp Biol 212:461–470PubMedCrossRefGoogle Scholar
  132. Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34:685–700PubMedCrossRefGoogle Scholar
  133. Sbarbati A, Leclerq F, Antonakis K, Osculati F (1992) Magnetic resonance imaging of the saccular otolithic mass. J Anat 181:369–732PubMedGoogle Scholar
  134. Schmidt-Rhaesa A (2009) Morphology and deep metazoan phylogeny. Zoomorphology 128:199–200CrossRefGoogle Scholar
  135. Schröder L, Faber C (2011) In vivo NMR imaging. Methods and protocols. Methods in Molecular Biology 771. Humana Press, New YorkGoogle Scholar
  136. Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449PubMedCrossRefGoogle Scholar
  137. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 30:10901–10906CrossRefGoogle Scholar
  138. Silva AC, Lee JH, Aoki I, Koretsky AP (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543PubMedCrossRefGoogle Scholar
  139. Skibbe U, Christeller JT, Eccles CD, Laing WA, Callaghan PT (1995) A method to distinguish between chemical shift and susceptibility effects in NMR micoscopy and its application to insect larvae. Magn Reson Imag 13:471–479CrossRefGoogle Scholar
  140. Slowik TJ, Green BL, Thorvilson HG (1997) Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging. Bioelectromagnetics 18:396–399PubMedCrossRefGoogle Scholar
  141. Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO (2009) Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 297:756–768CrossRefGoogle Scholar
  142. Straub J, Jurina K (2001) Magnetic resonance imaging in chelonians. Semin Avian Exotic Pet Med 10:181–186CrossRefGoogle Scholar
  143. Synthesys Network Activity F Pilot Study “Report on the technical parameters of MRI”. http://www.synthesys.info/na_f.htm
  144. Takahashi MK, Kato K, Matsushita K, Umeda M, Nishina M, Hori E, Takahashi M, Oshaka A (1989) 1H-MRI and in vivo 31P-MRS study of diseased state of smoky-brown cockroach infected with cockroach densovirus. Jpn J Sanit Zool 40:289–293Google Scholar
  145. Tindemans I, Verhoye M, Balthazart J, van der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 18:3352–3360PubMedCrossRefGoogle Scholar
  146. Tomanek B, Jasinski A, Sulek Z, Muszynska J, Kulnowski P, Kwiecinski S, Krzyzak A, Skorka T, Kibinski J (1996) Magnetic resonance microscopy of internal structure of drone and queen honey bees. J Apic Res 35:3–9Google Scholar
  147. Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16:93–99PubMedCrossRefGoogle Scholar
  148. Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23:341–346PubMedGoogle Scholar
  149. Ulmer S, Jansen O (2010) fMRI. Basics and clinical applications. Springer, BerlinGoogle Scholar
  150. Valente ALS, Cuenca R, Zamora MA, Parga ML, Lavin S, Alegre F, Marco I (2006) Sectional anatomic and magnetic resonance imaging of coelomic structures of loggerhead sea turtles. Am J Vet Res 67:1347–1353PubMedCrossRefGoogle Scholar
  151. Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518PubMedCrossRefGoogle Scholar
  152. Van den Burg EH, Verhoye M, Peeters RR, Meek J, Flik G, van der Linden A (2006) Activation of a sensorimotor pathway in response to a water temperature drop in a teleost fish. J Exp Biol 209:2015–2024PubMedCrossRefGoogle Scholar
  153. Van der Linden A, Verhoye M, Pörtner HO, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phys Biol Med 17:236–248Google Scholar
  154. Van der Linden A, van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545PubMedCrossRefGoogle Scholar
  155. Van der Linden A, van Meir V, Boumans T, Poirier C, Balthazart J (2009) MRI in small brains displaying extensive plasticity. Trends Neurosci 32:257–266PubMedCrossRefGoogle Scholar
  156. Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post mortem studies of fish using magnetic resonance imaging. Mod Magn Reson 1:959–966CrossRefGoogle Scholar
  157. Veliyulin E, Felberg HS, Digre H, Martinez I (2007) Non-destructive nuclear magnetic resonance image study of belly bursting in herring (Clupea harengus). Food Chem 101:1545–1551CrossRefGoogle Scholar
  158. Von Brand E, Cisterna M, Merino G, Uribe E, Palma-Rojas C, Rosenblitt M, Albornoz JL (2009) Non-destructive method to study the internal anatomy of the Chilean scallop Argopecten purpuratus. J Shellfish Res 28:325–327CrossRefGoogle Scholar
  159. Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642CrossRefGoogle Scholar
  160. Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Hériche JK (2010) Visualization of image data from cells to organisms. Nat Methods Suppl 7:S26–S41CrossRefGoogle Scholar
  161. Wang LC, Wan DP, Jung SM, Chen CC, Wong HF, Wan YL (2005) Magnetic resonance imaging findings in the brains of rabbits infected with Angiostrongylus cantonensis: a long-term investigation. J Parasitol 91:1237–1239PubMedCrossRefGoogle Scholar
  162. Watanabe T, Schachtner J, Krizan M, Boretius S, Frahm J, Michaelis T (2006) Manganese-enhanced 3D MRI of established and disrupted synaptic activity in the developing insect brain in vivo. J Neurosci Methods 158:50–55PubMedCrossRefGoogle Scholar
  163. Webb GA, Belton PS, Gil AM, Delgadillo I (2001) Magnetic resonance in food science: a view to the future. RSC Publishing, CambridgeCrossRefGoogle Scholar
  164. Wecker S, Hörnschemeyer T, Hoehn M (2002) Investigation of insect morphology by MRI: assessment of spatial and temporal resolution. Magn Reson Imag 20:105–111CrossRefGoogle Scholar
  165. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44PubMedCrossRefGoogle Scholar
  166. Westheide W, Rieger R (2007) Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere. 2. Auflage. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  167. Westheide W, Rieger R (2010) Spezielle Zoologie, Teil 2: Wirbel- oder Schädeltiere. 2. Auflage. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  168. Zhang X, Schneider JE, Portnoy S, Bhattacharya S, Henkelman RM (2010) Comparative SNR for high-throughput mouse embryo MR microscopy. Magn Reson Med 63:1703–1707PubMedCrossRefGoogle Scholar
  169. Ziegler A (in press) Broad application of non-invasive imaging techniques to echinoids and other echinoderm taxa. In: Proceedings of the 7th European Conference on Echinoderms. Lecture Notes Proceedings. Springer, BerlinGoogle Scholar
  170. Ziegler A, Mueller S (2011) Analysis of freshly fixed and museum invertebrate specimens using high-resolution, high-throughput MRI. In: Schröder L, Faber C (eds) In vivo NMR imaging. Methods in Molecular Biology 771. Humana Press, New York, pp 633–651CrossRefGoogle Scholar
  171. Ziegler A, Faber C, Mueller S, Bartolomaeus T (2008) Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biol 6:33PubMedCrossRefGoogle Scholar
  172. Ziegler A, Bartolomaeus T, Mueller S (2010a) Sea urchin (Echinoidea) anatomy revealed by magnetic resonance imaging and 3D visualization. In: Harris LG, Boettger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. CRC Press, Boca Raton, pp 305–310Google Scholar
  173. Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A (2010b) Opportunities and challenges for digital morphology. Biol Direct 5:45PubMedCrossRefGoogle Scholar
  174. Ziegler A, Mooi R, Rolet G, De Ridder C (2010c) Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 10:313PubMedCrossRefGoogle Scholar
  175. Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, Sellerer M, Ziegler A (2011) Effectively incorporating selected multimedia content into medical publications. BMC Med 9:17PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexander Ziegler
    • 1
  • Martin Kunth
    • 2
  • Susanne Mueller
    • 3
  • Christian Bock
    • 4
  • Rolf Pohmann
    • 5
  • Leif Schröder
    • 2
  • Cornelius Faber
    • 6
  • Gonzalo Giribet
    • 1
  1. 1.Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Leibniz-Institut für Molekulare PharmakologieBerlinGermany
  3. 3.Centrum für SchlaganfallforschungCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany
  5. 5.Max-Planck-Institut für Biologische KybernetikTübingenGermany
  6. 6.Institut für Klinische RadiologieUniversitätsklinikum MünsterMünsterGermany

Personalised recommendations