, Volume 130, Issue 1, pp 51–84 | Cite as

The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy: evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia

  • Birgen H. Rothe
  • Andreas Schmidt-Rhaesa
  • Alexander Kieneke
Original Paper


We present a reconstruction of the nervous system of Neodasys chaetonotoideus Remane, 1927 (Gastrotricha, Chaetonotida) based on different microscopical methods: (1) immunohistochemistry (anti-acetylated α- and β-tubulin-, anti-5-HT- and anti-FMRFamide labelling) and (2) histochemistry (labelling of musculature and nuclei) by the means of confocal laser scanning microscopy (cLSM) and (iii) ultrastructure by means of transmission electron microscopy (TEM). All parts of the nervous system contain structures with an immunoreaction against the used immunohistochemical markers and labelling of histochemical markers. Results of both techniques (cLSM, TEM) reveal that the nervous system of N. chaetonotoideus is composed of a “dumb-bell-shaped” brain and one pair of posterior longitudinal neurite bundles. The brain is made up of a pair of laterally located clusters of neuronal somata, a large dorsal interconnecting dorsal commissure and two tiny ventral commissures in the region of the lateral clusters. From this, it follows that the brain is circumpharyngeal in position. The innervation of the head region is conducted by three pairs of anterior-directed neurite bundles. We describe here the gross anatomy of the nervous system and give additional details of the ultrastructure and the 5-HT and RFamide-like IR components of the nervous system. We compare our newly obtained data with already published data on the nervous system of gastrotrichs to reconstruct the hypothetical ground pattern of the nervous system in Gastrotricha, respectively, in Macrodasyida.


Gastrotricha Nervous system (Immuno)histochemistry cLSM Ultrastructure Serotonin Tubulin FMRFamide Evolution 



Many thanks to the people at the Wadden Sea Station (AWI) in List/Sylt, especially to Werner Armonies. BHR and ASR were supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) (SCHM 1278/8-2) within the frame of the focal program Deep Metazoan phylogeny (SPP 1174). Two anonymous referees are also acknowledged for offering suggestions that greatly improved the manuscript.


  1. Abbot NJ (1995) Morphology of nonmamalian glia cells: functional implications. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press Inc, New York, pp 97–119Google Scholar
  2. Ahlrichs W (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). Hypothesen zu phylogenetischen Verwandtschafts-verhältnissen innerhalb der Bilateria. Cuvillier Verlag, GöttingenGoogle Scholar
  3. Ax P (2001) Multicellular animals III. Order in nature—system made by Man. Springer, BerlinGoogle Scholar
  4. Bullock TH, Horridge GA (1965) Structure and Function in the nervous system of invertebrates, vol 2. Freeman, San FranciscoGoogle Scholar
  5. Chase DL, Koelle MR (2007). Biogenic amine neurotransmitters in C. elegans. In WormBook, pp 1–15Google Scholar
  6. Colacino JM, Kraus DW (1984) Hemoglobine-containing cells of Neodasys (Gastrotricha, Chaetonotida)—II. Respiratory significance. Camp Biochem Physiol 79A(3):363–369Google Scholar
  7. Crittenden SL, Kimble J (1999) Confocal methods for Caenorhabditis elegans. In: Paddock SW (ed) Confocal microscopy methods and protocols. Humana Press, Totowa, New Jersey, pp 141–153Google Scholar
  8. Czeczuga B (1961) Haemoglobin in the Chironomus (Tendipes) annularius Meig. larvae from various growth classes. Naturwissenschaften 48:651–652CrossRefGoogle Scholar
  9. Duham-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126:2327–2334Google Scholar
  10. Ehlers U, Ahlrichs W, Lemburg C, Schmidt-Rhaesa A (1996) Phylogenetic systematization of the nemathelminthes (Aschelminthes). Verh Dtsch Zool Ges 89(1):8Google Scholar
  11. Gaerber CW, Salvenmoser W, Rieger RM, Gschwentner R (2007) The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. Zoomorphology 126:73–87CrossRefGoogle Scholar
  12. Giribet G, Distel DLD, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562PubMedCrossRefGoogle Scholar
  13. Hirsch RE, Vidugiris GJ, Friedman JM, Harrington JP (1994) Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin. Biochem Biophys Acta 1205(2):248–251PubMedCrossRefGoogle Scholar
  14. Hirth F, Reichert H (2007) Basic nervous system types: one or many? In: Bullock TH, Krubitzer LA, Preuss TM, Rubenstein JLR, Strausfeld NJ, Striedter GF (eds) Evolution of nervous systems, vol I. Elsevier, London, San Diego, pp 57–69Google Scholar
  15. Hochberg R (2005) Musculature of the primitive gastrotrich Neodasys (Chaetonotida): functional adaptations to the interstitial environment and phylogenetic significance. Mar Biol 146:315–323CrossRefGoogle Scholar
  16. Hochberg R (2006) On the serotonergic nervous system of two planktonic rotifers, Conochilus coenobasis and C. dossuarius (Monogononta, Flosculariacea, Conochilidae). Zool Anz 245:53–62CrossRefGoogle Scholar
  17. Hochberg R (2007a) Topology of the nervous system of Notommata copeus (Rotifera: Monogononta) revealed with anti-FMRFamide, -SCPb, and -serotonin (5-HT) immunohistochemistry. Invertebr Biol 126:247–256CrossRefGoogle Scholar
  18. Hochberg R (2007b) Comparative immunohistochemistry of the cerebral ganglion in Gastrotricha: an analysis of FMRFamidelike immunoreactivity in Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Zoomophology 126:245–264CrossRefGoogle Scholar
  19. Hochberg R, Litvaitis MK (2000) Phylogeny of gastrotricha: a morphology-based framework of gastrotrich relationships. Biol Bull 198:299–305PubMedCrossRefGoogle Scholar
  20. Hochberg R, Litvaitis MK (2001) The muscular system of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zoologica Scripta 30:325–336CrossRefGoogle Scholar
  21. Hochberg R, Livaitis MK (2003) Ultrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichs. Acta Zool 84:171–178CrossRefGoogle Scholar
  22. Joffe BI, Wikgren M (1995) Immunocytochemical distribution of 5-Ht (serotonin) in the nervous system of the gastrotrich Turbanella cornuta. Acta Zool 76:7–9CrossRefGoogle Scholar
  23. Kieneke A, Martínez Arbizu P, Ahlrichs WH (2007) Ultrastructure of the Protonephridial system of Neodasys chaetonotoideus (Gastrotricha: Chaetonotida) and in the ground pattern of Gastrotricha. J Morphol 268:602–613PubMedCrossRefGoogle Scholar
  24. Kieneke A, Riemann O, Ahlrichs WH (2008) Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. Zool Scripta 37:429–460CrossRefGoogle Scholar
  25. Kieneke A, Ahlrichs WH, Martínez Arbizu P (2009) Morphology and function of reproductive organs in Neodasys chaetonotoideus (Gastrotricha: Neodasys) with a phylogenetic assessment of the reproductive system in Gastrotricha. Zool Scripta 38:289–311CrossRefGoogle Scholar
  26. Kraus DW, Travis PB, Colacino JM, Ruppert EE (1981) Occurrence of hemoglobin in Gastrotricha. Am Zool 21:950Google Scholar
  27. Ladurner P, Mair GR, Reiter D, Salvenmoser W, Rieger RM (1997) Serotonergic nervous system of two macrostomid species: recent or ancient divergence? Invertebr Biol 116(3):178–191CrossRefGoogle Scholar
  28. Lammert V (1986) Vergleichende ultrastruktur-untersuchungen an gnathostomuliden und die phylogenetische bewertung ihrer merkmale. PhD-Thesis. Universität GöttingenGoogle Scholar
  29. Lammert V (1991) Gnathostomulida. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates 4: Aschelminthes. Wiley-Liss, New York, pp 19–39Google Scholar
  30. Luft JH (1964) Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J Cell Biol 23:54A–55AGoogle Scholar
  31. Luft JH (1971a) Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec 171:347–368PubMedCrossRefGoogle Scholar
  32. Luft JH (1971b) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171:369–416PubMedCrossRefGoogle Scholar
  33. Maddison WP, Maddison DR (1989) Interactive analysis of phylogeny and character evolution using the computer program MACCLADE. Folia Primatol 53:190–202PubMedCrossRefGoogle Scholar
  34. Maddison DR, Maddison WP (2000) MACCLADE—analysis of phylogeny and character evolution, version 4.0. [computer software and manual]. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  35. Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extendible file format for systematic information. Syst Biol 46:590–621PubMedCrossRefGoogle Scholar
  36. Maule AG, Geary TG, Marks NJ, Bowman JW, Friedman AR, Thompson DP (1999) Nematode FMRFamide peptide (FaRP)-systems: occurrence, distribution and physiology. Int J Parasitol 26(8/9):927–936Google Scholar
  37. Morris J, Cardona A, Del Mar De Miguel Bonet M, Hartenstein V (2007) Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Dev Genes Evol 217:569–584PubMedCrossRefGoogle Scholar
  38. Müller MCM, Sterrer W (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphology 123:169–177Google Scholar
  39. Nielsen C (2001) Animal evolution. Interrelationships of the living phyla, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  40. Page RDM (2001). NDE—nexus data editor version 0.5.0. [computer software and manual]. Available via
  41. Plesnila N, Putz C, Rinecker M, Wiezorrek J, Schleinkofer L, Goetz AE, Kuebler WM (2002) Measurement of absolute values of hemoglobin oxygenation in the brain of small rodents by near infrared reflection spectrophotometry. J Neurosci Methods 114:107–117PubMedCrossRefGoogle Scholar
  42. Price DA, Greenberg MJ (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides. Biol Bull 177:198–205CrossRefGoogle Scholar
  43. Remane A (1926) Morphologie und Verwandtschaftsbeziehungen der aberranten Gastrotrichen I. Z Morph Ökol Tiere 5:625–754CrossRefGoogle Scholar
  44. Remane A (1927) Neue Gastrotricha Macrodasyidea. Zool Jahrb Syst 54:203–242Google Scholar
  45. Remane A (1936) Gastrotricha und Kinorhyncha. In: Bronns HG (ed) Kl Ordn Tierreichs, vol 4, pp 1–385Google Scholar
  46. Richter S, Loesel R, Purschke P, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Hausen H, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny—suggestions of terms and definitions for a neuroanatomical glossary. Front Zool 7(1):29PubMedCrossRefGoogle Scholar
  47. Rieger RM, Ruppert EE (1978) Resin embedments of quantitative meiofauna samples for ecological and structural studies—description and application. Mar Biol 46:223–235CrossRefGoogle Scholar
  48. Romer AS, Parson TS (1991) Vergleichende Anatomie der Wirbeltiere, 5th edn. Verlag Paul Parey, Hamburg, BerlinGoogle Scholar
  49. Rothe BH, Schmidt-Rhaesa A (2008) Variation in the nervous system in three species of the genus Turbanella (Gastrotricha, Macrodasyida). Meiofauna Mar 16:175–184Google Scholar
  50. Rothe BH, Schmidt-Rhaesa A (2009) Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida). Zoomorphology 128:227–246CrossRefGoogle Scholar
  51. Rothe BH, Schmidt-Rhaesa A (2010a) Oregodasys cirratus, a new species of Gastrotricha (Macrodasyida) from Tenerife (Canary Islands), with a description of the muscular and nervous system. Meiofauna Mar 18:49–66Google Scholar
  52. Rothe BH, Schmidt-Rhaesa A (2010b) The structure of the nervous system in Tubiluchus troglodytes (Priapulida). Invertebr Biol 129(1):39–58CrossRefGoogle Scholar
  53. Ruppert EE (1982) Comparative ultrastructure of the gastrotrich pharynx and the evolution of myoepithelial foreguts in Aschelminthes. Zoomorphology 99:181–220CrossRefGoogle Scholar
  54. Ruppert EE (1991) Gastrotricha. In: Harrison F, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4, Aschelminthes. Wiley, Washington, pp 41–109Google Scholar
  55. Ruppert EE, Travis PB (1983) Hemoglobin containing cells of Neodasys (Gastrotricha, Chaetonotida). I. Morphology and ultrastructure. J Morphol 175:57–64CrossRefGoogle Scholar
  56. Schinkmann K, Li C (1992) Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 316:251–260PubMedCrossRefGoogle Scholar
  57. Teuchert G (1977) The ultrastructure of the marine gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetic importance. Zoomorphologie 88:189–246CrossRefGoogle Scholar
  58. Todaro MA, Hummon WD (2008) An overview and a dichotomous key to genera of the phylum Gastrotricha. Meiofauna Mar 16:3–20Google Scholar
  59. Todaro MA, Littlewood DTJ, Balsamo M, Herniou EA, Cassanelli S, Manicardi G, Wirz A, Tongiorgi P (2003) The interrelationships of the Gastrotricha using nuclear small rRNA subunit sequence data, with an interpretation based on morphology. Zool Anz 242:145–156CrossRefGoogle Scholar
  60. Todaro AM, Telford MJ, Lockyer AE, Littlewood DTJ (2006) Interrelationships of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zool Scripta 35(3):251–259CrossRefGoogle Scholar
  61. Travis PB (1983) Ultrastructural study of body wall organization and Y-cell composition in the Gastrotricha. Z Zool Syst Evol 21:52–68CrossRefGoogle Scholar
  62. Uhlig G (1964) Eine einfache Methode zur Extraction der vagilen, mesopsammalen Mikrofauna. Helgoländer Wiss Meeresunt 11:151–157Google Scholar
  63. Van der Ploet M, van Dujin P (1979) Reflection versus fluorescence—a note on the physical backgrounds of two types of light microscopy. Histochem 62:227–232CrossRefGoogle Scholar
  64. Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zool Scripta 36:509–523CrossRefGoogle Scholar
  65. Wanninger A (2007) The application of confocal microscopy and 3D imaging software in functional, evolutionary, and developmental zoology: reconstructing myo- and neurogenesis in space and time. In: Mendez-Vilas A, Dias J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, Spain, pp 353–361Google Scholar
  66. Wiedermann A (1995) Zur ultrastruktur des nervensystems bei Cephalodasys maximus (Macrodasyida, Gastrotricha). Microfauna Mar 10:173–233Google Scholar
  67. Zeis B, Becher B, Goldmann T, Clark R, Vollmer E, Bölke B, Bredebusch I, Lamkemeyer T, Pinkhaus O, Pirow R, Paul RJ (2003) Differential haemoglobin gene expression in the crustacean Daphnia magna exposed to different oxygen partial pressures. Biol Chem 384:1133–1145PubMedCrossRefGoogle Scholar
  68. Zelinka C (1889) Die gastrotrichen. Eine monographische darstellung ihrer anatomie, biologie und systematik. Zeitschr f Wissensch Zoologie 49:209–384Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Birgen H. Rothe
    • 1
  • Andreas Schmidt-Rhaesa
    • 1
  • Alexander Kieneke
    • 2
  1. 1.Biozentrum Grindel und Zoologisches Museum, Universität HamburgHamburgGermany
  2. 2.Forschungsinstitut und Naturmuseum Senckenberg, Deutsches Zentrum für Marine BiodiversitätsforschungWilhelmshavenGermany

Personalised recommendations