Zoomorphology

, Volume 130, Issue 1, pp 17–29 | Cite as

Pincer-like claws in centipedes (Chilopoda): multiple evolutionary origin of similar form and serial pattern

Original Paper

Abstract

In most Chilopoda, the walking legs end in a single-tip claw usually accompanied by short accessory spines. Instead, in all species of three small and only distantly related geophilomorph taxa (Diphyonyx, Neogeophilidae, Eucratonyx), the claws of an anterior set of leg pairs are unusually pincer-like. By integrating different microscopic techniques, including confocal laser scanning microscopy, we found that these modified claws are very similar in form, internal structure, and pattern of variation in shape along the trunk in all three taxa: the claws are distinctly swollen and bent, provided with peculiar bulges, and flanked by a conspicuous additional branch, either cylindrical or flattened, which overreaches the tip of the claw; instead, the internal cuticular features are not modified with respect to the condition in the other centipedes, claiming against the possibility of controlled abduction/adduction between claw and branch. Irrespective of the total number of leg pairs (63–129), the claws change gradually from pincer-like to usual shape invariantly in the range spanning between the 34 and the 45% of the total number of leg pairs. Despite these similarities, pincer-like claws originated independently in the three taxa, and by way of fundamentally different changes, either by the dramatic modification of the already existent anterior accessory spine (Diphyonyx, Neogeophilidae) or by the production of a novel cuticular projection (Eucratonyx). Moreover, their shared pattern of variation along the body was most probably constrained by already operating developmental processes controlling the longitudinal patterning of the trunk.

Keywords

Chilopoda Geophilomorpha Leg Pretarsus Parallel evolution Evolutionary novelty 

Supplementary material

435_2011_118_MOESM1_ESM.pdf (61 kb)
Specimens examined of representative species with usual claws (PDF 60 kb)

Volume rendering of the cuticle of the pretarsus of an anterior leg of Clinopodes flavidus, derived from a series of CLSM sub-sagittal sections of left pretarsus 17 of a ♂ with 65 leg pairs (MPG 1209 kb)

Volume rendering of the cuticle of the pretarsus of an anterior leg of Diphyonyxconjungens, derived from a series of CLSM sub-sagittal sections of left pretarsus 13 of a ♂ with 77 leg pairs (MPG 1209 kb)

Volume rendering of the cuticle of the pretarsus of an anterior leg of Neogeophilus primus, derived from a series of CLSM sub-sagittal sections of left pretarsus ca. 13 of a ♂ with >57 leg pairs (MPG 1209 kb)

Volume rendering of the cuticle of the pretarsus of an anterior leg of Eucratonyx meinerti, derived from a series of CLSM sub-sagittal sections of left pretarsus 21 of a ♂ with 105 leg pairs (MPG 1209 kb)

References

  1. Attems C (1903) Synopsis der Geophiliden. Zool Jahrb Syst 18:155–302Google Scholar
  2. Attems C (1926) Chilopoda. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie. De Gruyter, Berlin, Leipzig, 4(1):239–402Google Scholar
  3. Attems C (1929) Myriapoda. 1. Geophilomorpha. Das Tierreich 52. De Gruyter, BerlinGoogle Scholar
  4. Berto D, Fusco G, Minelli A (1997) Segmental units and shape control in Chilopoda. Entomol Scand 51(suppl.):61–70Google Scholar
  5. Bonato L, Minelli A (2009) Geophilomorph centipedes in the mediterranean region: revisiting taxonomy opens new evolutionary vistas. Soil Org 81:489–503Google Scholar
  6. Bonato L, Zapparoli M, Minelli A (2008) Morphology, taxonomy and distribution of Diphyonyx gen. n., a lineage of geophilid centipedes with unusually shaped claws (Chilopoda: Geophilidae). Eur J Entomol 105:343–354Google Scholar
  7. Brolemann HW (1930) Élements d’une Faune des Myriapodes de France. Chilopodes. Imprimerie Toulosaine, ToulouseGoogle Scholar
  8. Brölemann HW (1909) À propos d’un système des géophilomorphes. Arch Zool Exp Gén (ser. 5)3:303–340Google Scholar
  9. Chalande J, Ribaut H (1909) Études sur la systematique de la famille des Himantariidae (Myriapodes). Arch Zool Exp Gén (ser. 5)1:197–275Google Scholar
  10. Crabill RE (1958) A new schendylid from the Eastern United States with notes on distribution and morphology (Chilopoda: Geophilomorpha: Schendylidae). Entomol News 69:153–160Google Scholar
  11. Crabill RE (1959) A new Floridan Pectiniunguis with re-appraisal of its type species and comments on the status of Adenoschendyla and Litoschendyla (Chilopoda: Geophilomorpha: Schendylidae). J Wash Acad Sci 49:324–330Google Scholar
  12. Crabill RE (1961a) Concerning the Neogeophilidae with a proposal of a new genus (Chilopoda: Geophilomorpha: Neogeophilidae). Entomol News 72(155–159):177–190Google Scholar
  13. Crabill RE (1961b) A new appraisal of Afrotaenia (Chilopoda, Geophilomorpha, Schendylidae). Senck Biol 42:501–505Google Scholar
  14. Crabill RE (1962) Concerning chilopod types in the British Museum (Natural History). Part I. Chilopoda: Geophilomorpha: Scolopendromorpha. Ann Mag Nat Hist 13:505–510Google Scholar
  15. Crabill RE (1968) On the true identity of Chomatophilus with description of a new species, and with key and catalogue of all sogonid genera (Chilopoda: Geophilomorpha: Sogonidae). Proc Entomol Soc Wash 70:323–331Google Scholar
  16. Crabill RE (1969) Revisionary conspectus of Neogeophilidae with thoughts on a phylogeny. Entomol News 80:38–43Google Scholar
  17. de Grauw CJ, Frederix PLTM, Gerritsen HC (2002) Aberrations and penetration in in-depth confocal and two-photon microscopy. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, New York, pp 153–169Google Scholar
  18. Diaspro A, Federici F, Robello M (2002) Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl Optics 41:685–690CrossRefGoogle Scholar
  19. Drago L, Fusco G, Minelli A (2008) Non-systemic metamorphosis in male millipede appendages: long delayed, reversible effect of an early localized positional marker? Front Zool 5:5PubMedCrossRefGoogle Scholar
  20. Eason EH (1964) Centipedes of the British Isles. Warne, LondonGoogle Scholar
  21. Edgecombe GD (2004) Monophyly of Lithobiomorpha (Chilopoda): new characters from the pretarsal claws. Insect Syst Evol 35:29–41Google Scholar
  22. Edgecombe GD, Giribet G (2004) Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda, Chilopoda): an analysis of morphology and four molecular loci. J Zool Syst Evol Res 42:89–134CrossRefGoogle Scholar
  23. Edgecombe GD, Giribet G (2007) Evolutionary biology of centipedes (Myriapoda: Chilopoda). Ann Rev Entomol 52:151–170CrossRefGoogle Scholar
  24. Foddai D, Minelli A (2000) Phylogeny of geophilomorph centipedes: old wisdom and new insights from morphology. Fragm Faun 43(suppl):61–71Google Scholar
  25. Fusco G, Minelli A (2000) Measuring morphological complexity of segmented animals: centipedes as model systems. J Evol Biol 13:38–46CrossRefGoogle Scholar
  26. Jones RE (1998) On the species of Tuoba (Chilopoda: Geophilomorpha) in Australia, New Zealand, New Caledonia, Solomon Islands and New Britain. Rec W Austr Mus 18:333–346Google Scholar
  27. Klaus AV, Schawaroch V (2006) Novel methodology utilizing confocal laser scanning microscopy for systematic analysis in arthropods (Insecta). Integr Comp Biol 46:207–214CrossRefGoogle Scholar
  28. Klaus AV, Kulasekera VL, Schawaroch V (2003) Three-dimensional visualization of insect morphology using confocal laser scanning microscopy. J Microsc 212:107–121PubMedCrossRefGoogle Scholar
  29. Manton SM (1965) The evolution of arthropodan locomotory mechanism. Part. 8. Functional requirements and body design in Chilopoda together with a comparative account of their skeleto-muscolar system and appendix on comparison between burrowing forces of annelids and an appendix on a comparison between burrowing forces of annelids and chilopods and its bearing upon the evolution of the arthropodan haemocoel. J Linn Soc London Zool 46:251–484CrossRefGoogle Scholar
  30. Michels J (2007) Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. J Microsc 227:1–7PubMedCrossRefGoogle Scholar
  31. Minelli A (1992) Towards a new comparative morphology of myriapods. Ber natur med Ver Innsbruck 10(suppl):37–46Google Scholar
  32. Minelli A, Foddai D, Pereira LA, Lewis JGE (2000) The evolution of segmentation of centipede trunk and appendages. J Zool Syst Evol Res 38:103–117CrossRefGoogle Scholar
  33. Pereira LA (2000) The preparation of centipedes for microscopical examination with particular reference to the Geophilomorpha. Bull Br Myr Group 16:22–25Google Scholar
  34. Pereira LA, Minelli A (1996) The species of the genus Schendylurus Silvestri, 1907 of Argentina, Brazil and Paraguay. Trop Zool 9:225–295Google Scholar
  35. Pereira LA, Minelli A, Barbieri F (1995) Description of nine new centipede species from Amazonia and related matters on Neotropical geophilomorphs (Chilopoda: Geophilomorpha). Amazoniana 13:325–418Google Scholar
  36. Pereira LA, Minelli A, Foddai D (1999) Pectiniunguis bollmani n. sp., from the coralline island Cayo Sombrero (Venezuela) with notes on P. halirrhytus Crabill, 1959 (Chilopoda: Geophilomorpha: Schendylidae). St Neotr Fauna Envir 34:176–185CrossRefGoogle Scholar
  37. Pocock RI (1891) On the Myriopoda of Burma. Part 2. Report upon the Chilopoda collected by Sig. L. Fea and Mr. E.W. Oates. Ann Mus Civ St Nat Genova (ser. 2)10:401–432Google Scholar
  38. Ribaut H (1912) Chilopodes (Voyage de M. le Dr. Merton aux îles Kei et Aru). Abh Senck Naturforsch Ges 34:281–287Google Scholar
  39. Silvestri F (1918) Descrizione di due nuovi generi di Geophilidae (Chilopoda) del Messico. Boll Lab Zool Gen Agr R Sc Sup Agric 12:352–358Google Scholar
  40. Verhoeff KW (1902-25) Chilopoda. In: Bronn H G (ed) Klassen und Ordnungen des Tierreiches. Winter, Leipzig, 5(2)Google Scholar
  41. Verhoeff KW (1903) Über Tracheaten-Beine. Vierter und fünfter Aufsatz: Chilopoda und Hexapoda. N Acta Abh Kais Leop Car Deutsch Akad Naturforsch 81(4):211–256Google Scholar
  42. Zill S, Frazier SF, Neef D, Quimby L, Carney M, Dicaprio R, Thuma J, Norton M (2000) Three-dimensional graphic reconstruction of the insect exoskeleton through confocal imaging of endogenous fluorescence. Microsc Res Techn 48:367–384CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lucio Bonato
    • 1
  • Leandro Drago
    • 1
  • Alessandro Minelli
    • 1
  1. 1.Dipartimento di BiologiaUniversità di PadovaPadovaItaly

Personalised recommendations