, Volume 129, Issue 3, pp 163–174 | Cite as

Copulation anatomy of Drosophila melanogaster (Diptera: Drosophilidae): wound-making organs and their possible roles

  • Yoshitaka KamimuraEmail author
Original Paper


Males of several insect species inflict wounds on female genitalia during copulation. Such copulatory wounding also occurs in the fruit fly Drosophila melanogaster Meigen, 1830, one of the most important model organisms. Using a flash fixation technique with mating pairs of D. melanogaster, I examined the use and functions of the male phallic organ within the female reproductive tract. Paired components of the phallic organ (gonopods and two pairs of branches of the basal processes of the aedeagus) opened sequentially, from outer to inner components, during copulation. The dorsal branches of the aedeagal basal processes pierced the intima of the female reproductive tract at the lateral shallow folds. Consequently, mated females usually had a pair of melanized patches from repaired copulatory wounds. The sites that were stabbed by the dorsal branches were also clutched on the outside of the female oviscape (ovipositor) by the posterior process, which is a component of the periphallic organ. These structures likely function together as a mate-holding device. Male ejaculate labeled with rhodamine-B fluorescent dye entered the copulatory wounds in D. eugracilis Bock and Wheeler (Univ Texas Publ 7213:1–102, 1972), a related species, but not in D. melanogaster. Thus, copulatory wounds may function as an entrance for male seminal chemicals into the female circulatory system in D. eugracilis, but might not in D. melanogaster.


Genital coupling Copulatory wounding Damaging mating Seminal chemicals Drosophila melanogaster Drosophila eugracilis Genital evolution 



I thank M. J. Toda (Hokkaido Univ.) for help with the genitalic terminology, T. Ide (Tokyo Metropolitan Univ.) and H. Ono (Keio Univ.) for the fly strains, A. Suzuki (Keio Univ.) for valuable advice regarding SEM observation, D.J. Hosken (University of Exeter) and two anonymous referees for valuable comments on the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research (No. 19770046) from the Japan Ministry of Education, Culture, Sports, Science, and Technology, and Keio Gijuku Academic Development Funds.


  1. Blanckenhorn WU, Hosken DJ, Martin OY, Reim C, Teuschl Y, Ward PI (2002) The costs of copulating in the dung fly Sepsis cynipsea. Behav Ecol 13:353–358CrossRefGoogle Scholar
  2. Book IR, Wheeler MR (1972) The Drosophila melanogaster species group. Univ Texas Publ 7213:1–102Google Scholar
  3. Chapman T (2001) Seminal fluid-mediated fitness traits in Drosophila. Heredity 87:511–521CrossRefPubMedGoogle Scholar
  4. Chapman T, Davies SJ (2004) Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 25:1477–1490CrossRefPubMedGoogle Scholar
  5. Crudgington HS, Siva-Jothy MT (2000) Genital damage, kicking and early death. Nature 407:855–856CrossRefPubMedGoogle Scholar
  6. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
  7. Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, CambridgeGoogle Scholar
  8. Eberhard WG, Pereira F (1996) Functional morphology of male genitalic surstyli in the dungflies Archisepsis diversiformis and A. ecalcarata (Diptera: Sepsidae). J Kans Entomol Soc 69:43–60Google Scholar
  9. Eberhard WG, Ramirez N (2004) Functional morphology of the male genitalia of four species of Drosophila: failure to confirm both lock and key and male-female conflict predictions. Ann Entmol Soc Am 97:1007–1017CrossRefGoogle Scholar
  10. Ferris GF (1950) External morphology of the adult. In: Demerec M (ed) Biology of Drosophila. Hafner, New York, pp 368–419Google Scholar
  11. Hayashi F, Kamimura Y (2002) The potential for incorporation of male derived proteins into developing eggs in the leafhopper Bothrogonia ferruginea. J Insect Physiol 48:153–159CrossRefPubMedGoogle Scholar
  12. Hu Y-G, Toda MJ (2001) Polyphyly of Lordiphosa and its relationships in Drosophilinae (Diptera: Drosophilidae). Syst Entomol 26:15–31CrossRefGoogle Scholar
  13. Jagadeeshan S, Singh RS (2006) A time-sequence functional analysis of mating behaviour and genital coupling in Drosophila: role of cryptic female choice and male sex-drive in the evolution of male genitalia. J Evol Biol 19:1058–1070CrossRefPubMedGoogle Scholar
  14. Johnstone RA, Keller L (2000) How males can gain by harming their mates: sexual conflict, seminal toxins, and the cost of mating. Am Nat 156:368–377CrossRefGoogle Scholar
  15. Kamimura Y (2007) Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3:401–404CrossRefPubMedGoogle Scholar
  16. Kamimura Y (2008) Copulatory wounds in the monandrous ant species Formica japonica (Hymenoptera: Formicidae). Ins Soc 55:51–53CrossRefGoogle Scholar
  17. Kopp A (2006) Basal relationships in the Drosophila melanogaster species group. Mol Phylogenet Evol 39:787–798CrossRefPubMedGoogle Scholar
  18. Lachaise D, Harry M, Solignac M, Lemeunier F, Bénassi V, Cariou M-L (2000) Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc R Soc Lond B 193:275–294Google Scholar
  19. Lessells CM (1999) Sexual conflict in animals. In: Keller L (ed) Levels of selection in evolution. Princeton University Press, Princeton, pp 75–99Google Scholar
  20. Lung O, Wolfner MF (1999) Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol 29:1043–1052CrossRefPubMedGoogle Scholar
  21. McAlpine JF (1981) Morphology and terminology-adults. In: McAlpine JF (ed) Manual of nearctic diptera, vol 1. Canadian Government Publishing Center, Quebec, pp 9–63Google Scholar
  22. Morrow EH, Arnqvist G, Pitnick S (2003) Adaptation versus pleiotropy: why do males harm their mates. Behav Ecol 14:802–806CrossRefGoogle Scholar
  23. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc B 361:235–259CrossRefGoogle Scholar
  24. Parsch J (2003) Selective constraints on intron evolution in Drosophila. Genetics 165:1843–1851PubMedGoogle Scholar
  25. Pathak JPN (1993) Cell-mediated defence reactions in insects. In: Pathak JPN (ed) Insect immunity. Kluwer Academic Publishers, Dordrecht, pp 47–58Google Scholar
  26. Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60:289–310CrossRefGoogle Scholar
  27. Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445CrossRefGoogle Scholar
  28. Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem Mol Biol 35:1059–1071CrossRefPubMedGoogle Scholar
  29. Robertson HM (1988) Mating asymmetries and phylogeny in the Drosophila melanogaster species complex. Pac Sci 42:72–80Google Scholar
  30. Rönn J, Katvala M, Arnqvist G (2007) Coevolution between harmful male genitalia and female resistance in seed beetles. Proc Nat Acad Sci USA 104:10921–10925CrossRefPubMedGoogle Scholar
  31. Siva-Jothy MT (2009) Reproductive immunity. In: Rolff J, Reynolds SE (eds) Insect infection and immunity. Oxford University Press, Oxford, pp 241–251CrossRefGoogle Scholar
  32. Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat rev Genet 3:137–144CrossRefPubMedGoogle Scholar
  33. Teuschl Y, Hosken DJ, Blanckenhorn WU (2007) Is reduced female survival after mating a by-product of male-male competition in the dung fly Sepsis cynipsea? BMC Evol Biol 7:94CrossRefGoogle Scholar
  34. Tsacas L (1971) Drosophila teissieri, novella espèce africaine de groupe melanogaster et note sur deux autres espèces nouvelles pour l’Afrique. Bulletin de la Société Entomologique de France 76:35–45Google Scholar
  35. Tsacas L, Bächli G (1981) Drosophila sechellia, n. sp., huitième espèce du sous-groupe melanogaster des iles Séchelles (Diptera, Drosophilidae). Revue fr Ent (N. S.) 3:146–150Google Scholar
  36. Tsacas L, David J (1974) Drosophila mauritiana n. sp. du groupe melanogaster de I’Ile Maurice (Dipt. Drosophilidae). Bulletin de la Societe Entomologique de France 79:42–46Google Scholar
  37. Tsacas L, David J (1978) Une septième espèce appurtenant au sous-groupe Drosophila melanogaster Meigen: Drosophila orena spec. nov. du Cameroun (Diptera: Drosophilidae). Beiträge zur Entomologie, Berlin 28:179–182Google Scholar
  38. Tsacas L, Lachaise D (1974) Quatre nouvelles espèces de la Cote-d’Ivoire du genre Drosophila, groupe melanogaster, et discussion de l’origine du sous-groupe melanogaster (Diptera: Drosophilidae). Annales de l’Université d’Abidjan, Serie E: Ecologie 7:193–211Google Scholar
  39. Tsacas L, Bocquet CH, Daguzan M, Mercier A (1971) Comparaison des genitalia males de Drosophila melanogaster, de Drosophila simulans et de leurs hybrids. Ann Soc ent Fr (NS) 7:75–93Google Scholar
  40. Van der Reijden ED, Monchamp JD, Lewis SM (1997) The formation, transfer, and fate of spermatophores in Photinus fireflies (Coleoptera: Lampyridae). Can J Zool 75:1202–1207CrossRefGoogle Scholar
  41. Wigby S, Domanitskaya EV, Choffat Y, Kubli E, Chapman T (2008) The effect of mating on immunity can be masked by experimental piercing in female Drosophila melanogaster. J Insect Physiol 54:414–420CrossRefPubMedGoogle Scholar
  42. Wolfner MF (2002) The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88:85–93CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of BiologyKeio UniversityYokohamaJapan
  2. 2.Laboratory of Animal Ecology, Department of Ecology and Systematics, Graduate School of AgricultureHokkaido UniversityKita-ku, SapporoJapan

Personalised recommendations