, Volume 129, Issue 2, pp 133–139 | Cite as

Sperm ultrastructure of three Syllinae (Annelida, Phyllodocida) species with considerations on syllid phylogeny and Syllis vittata reproductive biology

  • Luigi Musco
  • Elena Lepore
  • Miriam Gherardi
  • Margherita Sciscioli
  • Maria Mercurio
  • Adriana Giangrande
Original Paper


Phylogeny of Syllidae is under debate due to new studies based on molecular and morphological data. The noticeable taxonomic diversity of syllids (about 700 listed species) is also mirrored in the array of reproductive strategies as well as in sperm morphology, counting a display of forms already supposed to reflect phylogenetic relationships between the species. The sperm ultrastructure of Syllis gerlachi, S. prolifera and S. vittata is herein presented and compared to the Syllinae species studied previously. Moreover, the egg structure and the gamete allocation within stolons of S. vittata are particularly investigated. Both male germinal cells at different level of maturation and oocytes were found in the same individual of S. vittata, suggesting simultaneous hermaphroditism. The ultrastructural analysis revealed that the observed spermatozoa belong to the ect-aquasperm type resembling those of the similar studied species (Syllis sp., S. pigmentata and S. krohni). Differences in the acrosome structure and nucleus shape are in accordance with a recent phylogenetic reconstruction and suggest a trend in the evolution of spermatozoa in Syllinae toward the development of the apical part. However, further molecular and ultrastructural analyses are needed to support this hypothesis. This is the first record of simultaneous hermaphroditism within Syllinae.


Syllidae Hermaphroditism Ect-aquasperm Spermatozoa Acrosome 



Thanks to Prof. Thomas Bartolomaeus and the anonymous Referees for valuable comments. Thanks to Alessandra Borghini for technical support. The work of the authors LM and AG was financed by the Project ACTIBIOMAR (http://www.actibiomar.it) granted by the Apulia Region and carried out within the MARBEF Network of Excellence which is funded in the Community’s Sixth Framework Programme (Contract no. GOCE-CT-2003-505446), the E.U. Integrated Project SESAME and the CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici). The research of the other authors was supported by grants from the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica (Scientific Research Ateneo of Bari University).


  1. Aguado MT, San Martín G (2009) Phylogeny of Syllidae (Polychaeta) based on morphological data. Zool Scri 38:379–402CrossRefGoogle Scholar
  2. Aguado MT, Nygren A, Siddall ME (2007) Phylogeny of Syllidae (Polychaeta) based on combined molecular analysis of nuclear and mitochondrial genes. Cladistics 23:1–13CrossRefGoogle Scholar
  3. Bührmann C, Westheide W, Purschke G (1996) Spermatogenesis and sperm ultra-structure in the interstitial syllid Petitia amphophtalma (Annelida, Polychaeta). Ophelia 45:201–211Google Scholar
  4. Daly JM (1975) Reversibile epitoky in the life history of the polychaete Odontosyllis polycera (Schmarda, 1861). J Mar Biol Assoc UK 55:327–344CrossRefGoogle Scholar
  5. Franke HD (1999) Reproduction of Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55CrossRefGoogle Scholar
  6. Franke HD, Pfannenstiel HD (1984) Some aspects of endocrine control of polychaete reproduction. In: Fischer A, Pfannenstiel HD (eds) Polychaete reproduction: progress in comparative reproductive biology. Fortschr Zool 29:53–72Google Scholar
  7. Garwood PR (1991) Reproduction and the classification of the family Syllidae (Polychaeta). Ophelia 5:81–87Google Scholar
  8. Ghiselin MT (1969) The evolution of Hermaphroditism among animals. Q Rev Biol 442:189–208CrossRefGoogle Scholar
  9. Giangrande A (1997) Polychaete reproductive patterns life cycles and life histories: an overview. Oceanogr Mar Biol Annu Rev 35:323–386Google Scholar
  10. Giangrande A, Sciscioli M, Lepore E, Mastrodonato M, Lupetti P, Dallai R (2002) Sperm ultra-structure and spermiogenesis in two Exogone species (Polychaeta, Syllidae, Exogoninae). Invertebr Biol 121:339–349Google Scholar
  11. Heacox AE, Schroeder PC (1981) A light- and electron-microscopic investigation of gametogenesis in Typosyllis pulchra (Berkeley and Berkeley) (Polychaeta: Syllidae) I. Gonad structure and spermatogenesis. Cell Tissue Res 218:623–639CrossRefPubMedGoogle Scholar
  12. Jamieson BGM, Rouse GW (1989) The spermatozoa of the Polychaeta (Annelida): an ultrastructural review. Biol Rev 64:93–157CrossRefPubMedGoogle Scholar
  13. Kuper M, Westheide W (1997) Sperm ultra-structure and spermatogenesis in the interstitial Polychaete Sphaerosyllis hermaphrodita (Syllidae: Exogoninae). Invertebr Reprod Dev 32:189–200Google Scholar
  14. Lepore E, Sciscioli M, Mastrodonato M, Gherardi M, Giangrande A, Musco L (2006) Sperm ultra-structure and spermiogenesis in Syllis krohni (Polychaeta: Syllidae), with some observations on its reproductive biology. Sci Mar 70:585–592Google Scholar
  15. Licciano M, Giangrande A, Gambi MC (2002) Reproduction and simultaneous hermaphroditism in Branchiomma luctuosum (Polychaeta, Sabellidae) from the Mediterranean Sea. Invert Biol 121:55–65CrossRefGoogle Scholar
  16. Licher F (1999) Revision der Gattung Typosyllis Langerhans, 1879 (Polychaeta: Syllidae). Morphologie, Taxonomie und Phylogenie. Abh Seckenb Natforsch Ges 551:1–336Google Scholar
  17. Mastrodonato M, Sciscioli M, Lepore E, Gherardi M, Giangrande A, Mercati D, Dallai R, Lupetti P (2003) External gestation of Exogone naidina Oersted, 1845 (Polychaeta, Syllidae): ventral attachment of eggs and embryos. Tissue Cell 35:297–305CrossRefPubMedGoogle Scholar
  18. Millonig G (1976) Laboratory manual of biological electron microscopy. Saviolo, VercelliGoogle Scholar
  19. Musco L, Giangrande A, Gherardi M, Lepore E, Mercurio M, Sciscioli M (2008) Sperm ultra-structure of Odontosyllis ctenostoma (Polychaeta: Syllidae) with inferences on syllid phylogeny and reproductive biology. Sci Mar 72:421–427Google Scholar
  20. Nygren A (1999) Phylogeny and reproduction in Syllidae (Polychaeta). Zool J Linn Soc 126:365–386CrossRefGoogle Scholar
  21. Patti P, Gambi MC, Giangrande A (2003) Preliminary study on the systematic relationships of Sabellinae (Polychaeta: Sabellidae), based on the C1 domain of the 28S rDNA, with discussion of reproductive features. Ital J Zool 70:269–278CrossRefGoogle Scholar
  22. Rouse GW (1999) Polychaete sperm: phylogenetic and functional considerations Hydrobiologia 402:215–224Google Scholar
  23. San Martín G (2003) Annelida, Polychaeta II: Syllidae. In: Ramos Sánchez MA et al (eds) Fauna Ibérica Vol. 21. Museo Nacional de Ciencias Naturales. CSIC, Madrid, pp 1–554Google Scholar
  24. Schroeder P, Hermans CO (1975) Annelida: Polychaeta. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates. Vol. 3 Annelids and Echiurans. Academic Press, New York, pp 1–213Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luigi Musco
    • 1
  • Elena Lepore
    • 2
  • Miriam Gherardi
    • 2
  • Margherita Sciscioli
    • 2
  • Maria Mercurio
    • 2
  • Adriana Giangrande
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità del SalentoLecceItaly
  2. 2.Dipartimento di Biologia Animale ed AmbientaleUniversità di BariBariItaly

Personalised recommendations