Zoomorphology

, Volume 128, Issue 3, pp 227–246 | Cite as

Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida)

Original Paper

Abstract

Immunohistochemical stainings have become standard tools to describe the nervous system, but usually only singular or few markers are used and consequently show only subsets of neurons within the nervous system. We investigated two species of Dactylopodola (Gastrotricha, Macrodasyida) with a broad set and combination of markers, to represent the nervous system in a more holistic approach. We suggest that markers for both neurotubuli (tubulin) and neurotransmitters (e.g. serotonin, FMRF-amides, histamine) should be used. Combinations with markers for the musculature (phalloidin) and nuclei (propidiumiodide or other markers) help to reveal spatial patterns and when used with TEM can provide a more precise picture of the spatial relationships of particular nerves. Species of Dactylopodola have a brain consisting of a solid dorsal commissure and a fine ventral commissure. Cell somata of brain cells are arranged lateral to the dorsal commissure and form a dumbbell-like brain. Additionally, projections into the head region, head sensory organs, one pair of lateroventral nerve cords with three commissures and stomatogastric nerves are described. Obviously, some longitudinal transmitter-specific fibres run in parallel to the main longitudinal nerve and represent additional longitudinal fibres. In comparison with the nervous system architecture of other gastrotrich species and that of different bilaterian animals it is speculated that the gastrotrich nervous system retains several ancestral features, such as being commissural and not a compact brain.

Keywords

Gastrotricha Nervous system Immunohistochemistry cLSM Ultrastructure Serotonin Tubulin FMRFamides Histamine Evolution 

References

  1. Ax P (2003) Multicellular Animals III. Order in Nature—System made by Man. Springer, BerlinGoogle Scholar
  2. Breidbach O (1990) Serotonin-immunoreactive brain interneurons persist during metamorphosis of an insect: a developmental study of the brain of Tenebrio molitor L. (Coleoptera). Cell Tissue Res 259:345–360. doi:10.1007/BF00318458 CrossRefGoogle Scholar
  3. Breidbach O, Wegerhoff R (1993) FMRFamide-like immunoreactive neurons in the central brain of the beetle Tenebrio molitor: Constancies and variations in development from embryo to adult. Int J Insect Morphol Embryol 23:383–404. doi:10.1016/0020-7322(94)90033-7 CrossRefGoogle Scholar
  4. Ehlers U, Ehlers B (1978) Paddle cilia and discocilia—genuine structures? Cell Tissue Res 192:489–501. doi:10.1007/BF00212328 PubMedCrossRefGoogle Scholar
  5. Grimmelikhuijzen CJP (1983) FMRFamide immunoreactivety is generally occurring in the nervous system of coelenterates. Histochemistry 78:361–381. doi:10.1007/BF00496623 PubMedCrossRefGoogle Scholar
  6. Harzsch S, Wildt M, Battelle B, Waloszek D (2005) Immunohistochemical localization of neurotransmitter in the nervous system of larval Limulus polyphemus (Chelicerata, Xiphosura): evidence for a conserved protocerebral architecture in Euarthropoda. Arthropod Struct Dev 34:327–342. doi:10.1016/j.asd.2005.01.006 CrossRefGoogle Scholar
  7. Hochberg R (2007) Comparative immunohistochemistry of the cerebral ganglion in Gastrotricha: an analysis of FMRFamide-like immunoreactivity in Neodasys cirritus (Chaetonotida), Xenodasys riedli and Turbanella cf. hyalina (Macrodasyida). Zoomophology 126:245–264. doi:10.1007/s00435-007-0044-2 CrossRefGoogle Scholar
  8. Hochberg R, Litvaitis MK (2000) Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. Biol Bull 198:299–305. doi:10.2307/1542532 PubMedCrossRefGoogle Scholar
  9. Hochberg R, Litvaitis MK (2001a) Macrodasyida (Gastrotricha): a cladistic analysis of morphology. Invertebr Biol 120:124–135. doi:10.1111/j.1744-7410.2001.tb00116.x CrossRefGoogle Scholar
  10. Hochberg R, Litvaitis MK (2001b) The muscular system of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zool Scr 30:325–336. doi:10.1046/j.1463-6409.2001.00066.x CrossRefGoogle Scholar
  11. Hochberg R, Livaitis MK (2003) Ultrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichs. Acta Zool 84:171–178. doi:10.1046/j.1463-6395.2003.00144.x CrossRefGoogle Scholar
  12. Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode C. elegans. Science 216:1012–1014. doi:10.1126/science.6805073 PubMedCrossRefGoogle Scholar
  13. Joffe BI, Kotikova EA (1987) Catecholamines in the nervous system of the gastrotrich Turbanella sp. Dokl Akad Nauk SSSR 296:1509–1511Google Scholar
  14. Joffe BI, Wikgren M (1995) Immunocytochemical distribution of 5-Ht (serotonin) in the nervous system of the gastrotrich Turbanella cornuta. Acta Zool 76:7–9CrossRefGoogle Scholar
  15. Kienecke A, Martinez Arbizu P, Ahlrichs WH (2008) Anatomy and ultrastructure of the reproductive organs in Dactylopodola typhle (Gastrotricha: Macrodasyida) and their possible functions in sperm transfer. Invertebr Biol 127:12–32. doi:10.1111/j.1744-7410.2007.00111.x CrossRefGoogle Scholar
  16. Kotikova EA, Raikova OI, Reuter M, Gustafsson MKS (2005) Rotifer nervous system visualized by FMRFamide and 5-Ht immunocytochemistry and confocal laser scanning microscopy. Hydrobiologia 546:239–248. doi:10.1007/s10750-005-4203-5 CrossRefGoogle Scholar
  17. Liesenjohann T, Neuhaus B, Schmidt-Rhaesa A (2006) Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques. J Morphol 267:897–908. doi:10.1002/jmor.10419 PubMedCrossRefGoogle Scholar
  18. Liu T, Kim K, Barr MM (2007) FMRFamide-like neuroprptide and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. J Neurosci 27:7174–7182. doi:10.1523/JNEUROSCI.1405-07.2007 PubMedCrossRefGoogle Scholar
  19. Lubics A, Reglődi D, Slezák S, Szelier M, Lengvári I (1997) Co-localization of serotonin and FMRFamide-like immunoreactivity in the central nervous system of the earthworm, Eisenia fetida. Acta Histochem 99:459–467PubMedGoogle Scholar
  20. Morris J, Cardona A, Del Mar De Miguel-Bonet M, Hartenstein V (2007) Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Dev Genes Evol 217:569–584. doi:10.1007/s00427-007-0166-z PubMedCrossRefGoogle Scholar
  21. Nässl DR (1999) Histamine in the brain of insects: a review. Microsc Res Tech 44:121–136. doi:10.1002/(SICI)1097-0029(19990115/01)44:2/3<121::AID-JEMT6>3.0.CO;2-FCrossRefGoogle Scholar
  22. Nässl DR, Holmqvist MH, Hardie RC, Håkanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646Google Scholar
  23. Panula P, Eriksson K, Gustafsson M, Reuter M (1995) An immunocytochemical method for histamine: application to the planarians. Hydrobiol 305:291–295. doi:10.1007/BF00036409 CrossRefGoogle Scholar
  24. Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) The brain of Nemertodermatida (Platyhelminthes) as revealed by anti-5Ht and anti-FMRFamide immunostainnings. Tissue Cell 32:358–365. doi:10.1054/tice.2000.0121 PubMedCrossRefGoogle Scholar
  25. Raikova OI, Reuter M, Gustafsson MKS, Maule AG, Halton DW, Jondelius U (2004) Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology 107:75–86. doi:10.1016/j.zool.2003.12.002 PubMedCrossRefGoogle Scholar
  26. Reglödi D, Slezák S, Lubic A, Szelier M, Elkes K, Lengvári I (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res 288:575–582. doi:10.1007/s004410050843 PubMedCrossRefGoogle Scholar
  27. Remane A (1926) Morphologie und Verwandtschaftsbeziehungen der aberranten Gastrotrichen I. Z Morph Ökol Tiere 5:625–754CrossRefGoogle Scholar
  28. Remane A (1936). Gastrotricha und Kinorhyncha. In: Bronn`s Kl. Ordn. Tierreichs 4: 1–385Google Scholar
  29. Reuter M, Raikova OI, Gustafsson MKS (2001) Pattern in the nervous and muscle systems in lower flatworms. Belg J Zool 31(Suppl 1):47–53Google Scholar
  30. Rieger RM, Ruppert EE (1978) Resin embedments of quantitative meiofauna samples for ecological and structural studies–description and application. Mar Biol (Berl) 46:223–235. doi:10.1007/BF00390684 CrossRefGoogle Scholar
  31. Rothe BH, Schmidt-Rhaesa A (2008) Variation in the nervous system in three species of the genus Turbanella (Gastrotricha, Macrodasyida). Meiofauna Marina 16:175–185Google Scholar
  32. Ruiz-Trillo I, Riutort M, Littlewood DTJ, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:1919–1923. doi:10.1126/science.283.5409.1919 PubMedCrossRefGoogle Scholar
  33. Ruppert EE (1982) Comparative ultrastructure of the gastrotrich pharynx and the evolution of myoepithelial foreguts in Aschelminthes. Zoomorphology 99:181–220. doi:10.1007/BF00312295 CrossRefGoogle Scholar
  34. Ruppert EE (1991) Gastrotricha. In: Harrison F, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4: Aschelminthes. Wiley, New York, pp 41–109Google Scholar
  35. Schmidt-Rhaesa A (2002) Two dimensions of biodiversity research amplified by Nematomorpha and Gastrotricha. Integr Comp Biol 42:633–640. doi:10.1093/icb/42.3.633 CrossRefGoogle Scholar
  36. Schmidt-Rhaesa A (2003) Old trees, new trees—is there any progress? Zoology 106:291–301. doi:10.1078/0944-2006-00128 PubMedCrossRefGoogle Scholar
  37. Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  38. Short G, Tamm SL (1991) On the nature of paddle cilia and discocilia. Biol Bull 180:466–474. doi:10.2307/1542347 CrossRefGoogle Scholar
  39. Teuchert G (1974) Aufbau und Feinstruktur der Muskelsysteme von Turbanella cornuta Remane (Gastrotricha, Macrodasyoida). Mikrofauna Meeresbodens 39:223–246Google Scholar
  40. Teuchert G (1976) Sinneseinrichtigungen bei Turbanella cornuta Remane (Gastrotricha). Zoomorphologie 83:193–207. doi:10.1007/BF00993484 CrossRefGoogle Scholar
  41. Teuchert G (1977) The ultrastructure of the marine gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetic importance. Zoomorphologie 88:189–246. doi:10.1007/BF00995474 CrossRefGoogle Scholar
  42. Teuchert G, Lappe A (1980) The so-called “pseudocoel” of Nemathelminthes—a comparison of the body cavity of several gastrotrichs. Zool Jahrb Anat 103:424–438Google Scholar
  43. Todaro MA, Littlewood DTJ, Balsamo M, Herniou EA, Cassanelli S, Manicardi G, Tongiorgi P (2003) The interreleationships of the Gastrotricha using nuclear small rRNA subunit sequence data, with an interpretation based on morphology. Zool Anz 242:145–156. doi:10.1078/0044-5231-00093 CrossRefGoogle Scholar
  44. Todaro MA, Telford MJ, Lockyer AE, Littlewood TJ (2006) Interrelationsship of the Gastrotricha and their place among the Metazoa inferred from 18S rRNA genes. Zool Scr 35:251–259. doi:10.1111/j.1463-6409.2006.00228.x CrossRefGoogle Scholar
  45. Travis PB (1983) Ultrastructural study of body wall organization and Y-cell composition in the Gastrotricha. Z Zool Syst Evolut-forsch 21:52–68CrossRefGoogle Scholar
  46. Uhlig G (1964) Eine einfache Methode zur Extraction der vagilen, mesopsammalen Mikrofauna. Helgoländer Wiss Meeresunt 11:151–157Google Scholar
  47. Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zool Scr 36:509–523. doi:10.1111/j.1463-6409.2007.00295.x CrossRefGoogle Scholar
  48. Wiedermann A (1995) Zur Ultrastruktur des Nervensystems bei Cephalodasys maximus (Macrodasyida, Gastrotricha). Microfauna Marina 10:173–233Google Scholar
  49. Wikgren M, Reuter M, Gustafsson MKS, Lindroos P (1990) Immunocytochemical localization of histamine in flatworms. Cell Tissue Res 260:479–484. doi:10.1007/BF00297227 PubMedCrossRefGoogle Scholar
  50. Wikgren M, Fagerholm H-P (1993) Neuropeptides in sensory structures of nematodes. Acta Biol Hung 44:133–136PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Evolutionary BiologyUniversity BielefeldBielefeldGermany
  2. 2.Zoological Museum and Biocenter GrindelUniversity HamburgHamburgGermany

Personalised recommendations