, Volume 127, Issue 4, pp 227–239 | Cite as

Comparative immunohistochemistry of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda)

  • Simone Faller
  • Sid Staubach
  • Annette Klussmann-Kolb
Original Paper


The structure and function of the central nervous systems of opisthobranch gastropods have been studied extensively. However, the organisation and function of the peripheral nervous system are poorly understood. The cephalic sensory organs (CSOs) are known to be chemosensory structures in the head region of opisthobranchs. In the present study, we used immunohistochemical methods and confocal laserscanning microscopy to comparatively examine the CSOs of different opisthobranchs, namely Acteon tornatilis, Aplysia punctata, Archidoris pseudoargus and Haminoea hydatis. We wanted to characterise sensory epithelia in order to infer the function of sensory structures and the organs they constitute. Immunoreactivity against the three antigens tyrosine hydroxylase, FMRFamide and serotonin was very similar in the CSOs of all investigated species. Tyrosine hydroxylase-like immunoreactivity was detected primarily in subepidermal sensory cell bodies, which were much more abundant in the anteriorly situated CSOs. This observation indicates that these cells and the respective organs may be involved in contact chemoreception and mechanoreception. The dominant features of FMRFamide-like immunoreactivity, especially in the posterior CSOs, were tightly knotted fibres which reveal glomerulus-like structures. This suggests an olfactory role for these organs. Serotonin-like immunoreactivity was detected in an extensive network of efferent fibres, but was not found within any peripheral cell bodies. Serotonin-like immunoreactivity was found in the same glomerulus-like structures as FMRFamide-like immunoreactivity, indicating a function of serotonin in the efferent control of olfactory inputs. Besides this functional implication, this study could also add some knowledge on the doubtful homology of the CSOs in opisthobranch gastropods.


Catecholamine FMRFamide Serotonin Immunohistochemistry Opisthobranchia 


  1. Audesirk TE (1975) Chemoreception in Aplysia californica. I. Behavioral localization of distance chemoreceptors used in food-finding. Behav Biol 15:45–55. doi:10.1016/S0091-6773(75)92066-0 PubMedCrossRefGoogle Scholar
  2. Bicker G, Davis WJ, Matera EM (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchaea californica. II. Neuroanatomical and intracellular analysis of afferent pathways. J Comp Physiol 149:235–250. doi:10.1007/BF00619217 CrossRefGoogle Scholar
  3. Boudko DY, Switzer-Dunlap M, Hadfield MG (1999) Cellular and subcellular structure of anterior sensory pathways in Phestilla sibogae (Gastropoda, Nudibranchia). J Comp Neurol 403:39–52. doi: 10.1002/(SICI)1096-9861(19990105)403:1≤39::AID-CNE4≥3.0.CO;2-BPubMedCrossRefGoogle Scholar
  4. Cardot J, Fellman D (1983) Immunofluorescent evidence of an FMRFamide-like peptide in the peripheral nervous system of the gastropod mollusc Helix aspersa. Neurosci Lett 43:167–172. doi:10.1016/0304-3940(83)90182-9 PubMedCrossRefGoogle Scholar
  5. Chase R (1979) Photic sensitivity of the rhinophore in Aplysia. Can J Zool 57:698–701CrossRefGoogle Scholar
  6. Chase R (2002) Behavior and its neural control in gastropod molluscs. Oxford University Press, New YorkGoogle Scholar
  7. Chase R, Tolloczko B (1986) Synaptic glomeruli in the olfactory system of a snail, Achatina fulica. Cell Tissue Res 246:567–573. doi:10.1007/BF00215198 CrossRefGoogle Scholar
  8. Chiasson BJ, Baker MW, Croll RP (1994) Morphological changes and functional recovery following axotomy of a serotonergic cerebrobuccal neurone in the land snail Achatina fulica. J Exp Biol 192:147–167PubMedGoogle Scholar
  9. Cooke IRC, Gelperin A (1988) Distribution of FMRFamide-like immunoreactivity in the nervous system of the slug Limax maximus. Cell Tissue Res 253:69–76PubMedGoogle Scholar
  10. Cottrell GA (1989) The biology of the FMRFamide-series of peptides in molluscs with special reference to Helix. Comp Biochem Physiol 93A(1):41–45. doi:10.1016/0300-9629(89)90189-8 CrossRefGoogle Scholar
  11. Croll RP (1983) Gastropod chemoreception. Biol Rev Camb Philos Soc 58:293–319. doi:10.1111/j.1469-185X.1983.tb00391.x CrossRefGoogle Scholar
  12. Croll RP (1987) Distribution of monoamines in the central nervous system of the nudibranch gastropod, Hermissenda crassicornis. Brain Res 405:337–347. doi:10.1016/0006-8993(87)90303-9 PubMedCrossRefGoogle Scholar
  13. Croll RP (2001) Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 441:91–105. doi:10.1002/cne.1399 PubMedCrossRefGoogle Scholar
  14. Croll RP, Boudko DY, Hadfield MG (2001) Histochemical survey of transmitters in the central ganglia of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 305:417–432. doi:10.1007/s004410100394 PubMedCrossRefGoogle Scholar
  15. Croll RP, Boudko DY, Pires A, Hadfield MG (2003) Transmitter contents of cells and fibres in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 314:437–448. doi:10.1007/s00441-003-0778-1 PubMedCrossRefGoogle Scholar
  16. Croll RP, Staubauch S, Klussmann-Kolb A (2004) FMRFamide-like immunoreactivity in the central nervous systems and periphery of Aplysia californica. World Congress of Malacology, Perth, AustraliaGoogle Scholar
  17. Davis WJ, Matera EM (1982) Chemoreception in gastropod molluscs: electron microscopy of putative receptor cells. J Neurobiol 13(1):79–84. doi:10.1002/neu.480130109 PubMedCrossRefGoogle Scholar
  18. Dayrat B, Tillier S (2002) Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluation of morphological characters. Zool J Linn Soc 135:403–470. doi:10.1046/j.1096-3642.2002.00018.x CrossRefGoogle Scholar
  19. Dayrat B, Tillier A, Lecointre G, Tillier S (2001) New clades of euthyneuran gastropods (Mollusca) from 28S rRNA sequences. Mol Phyl Evol 19(2):225–235. doi:10.1006/mpev.2001.0926 CrossRefGoogle Scholar
  20. Edlinger K (1980) Zur Phylogenie der chemischen Sinnesorgane einiger Cephalaspidea (Mollusca-Opisthobranchia). Z Zool Syst Evol 18:241–256Google Scholar
  21. Elekes K (1992) Neurotransmitters in the gastropod CNS: comparative immunocytochemistry. Acta Biol Hung 43(1–4):213–220PubMedGoogle Scholar
  22. Elekes K, Nässel DR (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 262:177–190. doi:10.1007/BF00327760 CrossRefGoogle Scholar
  23. Elekes K, Kemenes G, Hiripi L, Geffard M, Benjamin PR (1991) Dopamine-immunoreactive neurones in the central nervous system of the pond snail Lymnaea stagnalis. J Comp Neurol 307:214–224. doi:10.1002/cne.903070205 PubMedCrossRefGoogle Scholar
  24. Emery DG (1992) Fine structure of olfactory epithelia of gastropod molluscs. Microsc Res Tech 22:307–324. doi:10.1002/jemt.1070220402 PubMedCrossRefGoogle Scholar
  25. Emery DG, Audesirk TE (1978) Sensory cells in Aplysia. J Neurobiol 9:173–179. doi:10.1002/neu.480090207 PubMedCrossRefGoogle Scholar
  26. Göbbeler K, Klussmann-Kolb A (2007) A comparative ultrastructural investigation of the cephalic sensory organs in Opisthobranchia (Mollusca, Gastropoda). Tissue Cell 39(6):399–414. doi:10.1016/j.tice.2007.07.002 PubMedCrossRefGoogle Scholar
  27. Gosliner TM (1994) Gastropoda: Opisthobranchia. Microscopic anatomy of invertebrates Volume 5. Mollusca I:253–355Google Scholar
  28. Hernadi L, Elekes K (1999) Topographic organization of serotonergic and dopaminergic neurons in the cerebral ganglia and their peripheral projection patterns in the head areas of the snail Helix pomatia. J Comp Neurol 411:274–287. doi: 10.1002/(SICI)1096-9861(19990823)411:2≤274::AID-CNE8≥3.0.CO;2-9PubMedCrossRefGoogle Scholar
  29. Hernadi L, Elekes K, S-Rozsa K (1989) Distribution of serotonin-containing neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 257:313–323. doi:10.1007/BF00261835 CrossRefGoogle Scholar
  30. Hernadi L, Juhos S, Elekes K (1993) Distribution of tyrosine-hydroxylase-immunoreactive and dopamine-immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 274:503–513. doi:10.1007/BF00314547 CrossRefGoogle Scholar
  31. Hochberg R (2007) Serotonin-like immunoreactivity in the central and peripheral nervous systems of the interstitial acochlidean Asperspina sp. Biol Bull 213:43–54PubMedCrossRefGoogle Scholar
  32. Huber G (1993) On the cerebral nervous system of marine Heterobranchia (Gastropoda). J Molluscan Stud 59:381–420. doi:10.1093/mollus/59.4.381 CrossRefGoogle Scholar
  33. Jacklet JW (1980) Light sensitivity of the rhinophores and eyes of Aplysia. J Comp Physiol 136(3):257–262. doi:10.1007/BF00657541 CrossRefGoogle Scholar
  34. Jahan-Parwar B (1972) Behavioral and electrophysiological studies on chemoreception in Aplysia. Am Zool 12:525–537Google Scholar
  35. Kemenes G, Elekes K, Hiripi L, Benjamin PR (1989) A comparison of four techniques for mapping the distribution of serotonin and serotonin-containing neurons in fixed and living ganglia of the snail, Lymnaea. J Neurocytol 18(2):193–208. doi:10.1007/BF01206662 PubMedCrossRefGoogle Scholar
  36. Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond—new insights into the evolution of the euthyneuran Gastropoda (Mollusca). BMC Evol Biol 8:57. doi:10.1186/1471–2148-8-57 PubMedCrossRefGoogle Scholar
  37. Longley RD, Longley AJ (1986) Serotonin immunoreactivity of neurons in the gastropod Aplysia californica. J Neurobiol 17(4):339–358. doi:10.1002/neu.480170408 PubMedCrossRefGoogle Scholar
  38. Merton H (1920) Untersuchungen über die Hautsinnesorgane der Mollusken. I. Opisthobranchia. Abhandl Senckenb Naturf Ges 36(4):449–473Google Scholar
  39. Moroz LL (2006) Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous sytem of Aplysia californica. J Comp Neurol 495:10–20. doi:10.1002/cne.20842 PubMedCrossRefGoogle Scholar
  40. Moroz LL, Sudlow LC, Jing J, Gillette R (1997) Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 382:176–188. doi: 10.1002/(SICI)1096-9861(19970602)382:2≤176::AID-CNE3≥3.0.CO;2-0PubMedCrossRefGoogle Scholar
  41. Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous system of nudibranch molluscs. J Comp Neurol 499:485–505. doi:10.1002/cne.21111 PubMedCrossRefGoogle Scholar
  42. Ono JK, McCaman RE (1984) Immunocytochemical localization and direct assays of serotonin-containing neurons in Aplysia. Neuroscience 11(3):549–560. doi:10.1016/0306-4522(84)90044-7 PubMedCrossRefGoogle Scholar
  43. Ponder WF, Lindberg D (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zool J Linn Soc 119:83–265CrossRefGoogle Scholar
  44. Price DA, Greenberg MJ (1977) Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc. Prep Biochem 7:261–281. doi:10.1080/00327487708061643 PubMedCrossRefGoogle Scholar
  45. Price DA, Davies NW, Doble KE, Greenberg MJ (1987) The variety and distribution of the FMRFamide-related peptides in molluscs. Zoolog Sci 4:395–410Google Scholar
  46. Salimova NB, Sakharov DA, Milosevic I, Rakic L (1987) Catecholamine-containing neurons in the peripheral nervous system of Aplysia. Acta Biol Hung 38(2):203–212PubMedGoogle Scholar
  47. Salvini-Plawen L, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, The Malacological Society of London, pp 29–51Google Scholar
  48. Shirahata T, Watanabe S, Kirino Y (2004) Distribution of serotonin-like immunoreactive neurons in the slug Limax valentianus. Cell Tissue Res 315:285–290. doi:10.1007/s00441-003-0820-3 PubMedCrossRefGoogle Scholar
  49. S.-Rozsa K (1984) The pharmacology of molluscan neurons. Prog Neurobiol 23:79–150. doi:10.1016/0301-0082(84)90013-3 CrossRefGoogle Scholar
  50. Storch V, Welsch U (1969) Über den Bau und Funktion der Nudibranchier-Rhinophoren. Z Zellforsch 97:528–536. doi:10.1007/BF00332801 PubMedCrossRefGoogle Scholar
  51. Sudlow LC, Jing J, Moroz LL, Gillette R (1998) Serotonin-immunoreactivity in the central nervous system of the marine molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 395:466–480. doi: 10.1002/(SICI)1096-9861(19980615)395:4≤466::AID-CNE4≥3.0.CO;2-#PubMedCrossRefGoogle Scholar
  52. Suzuki H, Kimura T, Sekiguchi T, Mizukami A (1997) FMRFamide-like-immunoreactive primary sensory neurons in the olfactory system of the terrestrial mollusc, Limax marginatus. Cell Tissue Res 289:339–345. doi:10.1007/s004410050881 PubMedCrossRefGoogle Scholar
  53. Vonnemann V, Schrödl M, Klussmann-Kolb A, Wägele H (2005) Reconstruction of the phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18S and 28S rRNA gene sequences. J Molluscan Stud 71:113–125. doi:10.1093/mollus/eyi014 CrossRefGoogle Scholar
  54. Wertz A, Rössler W, Obermayer M, Bickmeyer U (2006) Functional neuroanatomy of the rhinophore of Aplysia punctata. Front Zool 3:6. doi:10.1186/1742-9994-3-6 PubMedCrossRefGoogle Scholar
  55. Wertz A, Rössler W, Obermayer M, Bickmeyer U (2007) Functional neuroanatomy of the rhinophore of Archidoris pseudoargus. Helgol Mar Res 61:135–142. doi:10.1007/s10152-007-0061-z CrossRefGoogle Scholar
  56. Wollesen T, Wanninger A, Klussmann-Kolb A (2007) Neurogenesis of cephalic sensory organs of Aplysia californica. Cell Tissue Res 330:361–379. doi:10.1007/s00441-007-0460-0 PubMedCrossRefGoogle Scholar
  57. Wolter H (1967) Beiträge zur Biologie, Histologie und Sinnesphysiologie (insbesondere der Chemorezeption) einiger Nudibranchier (Mollusca, Opisthobranchia) der Nordsee. Z Morphol Oekol Tiere 60:275–337. doi:10.1007/BF00424637 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Simone Faller
    • 1
    • 2
  • Sid Staubach
    • 1
  • Annette Klussmann-Kolb
    • 1
  1. 1.Institute for Ecology, Evolution and Diversity—Phylogeny and SystematicsGoethe-University FrankfurtFrankfurt am MainGermany
  2. 2.Department of Developmental Biology and Morphology of AnimalsInstitute for Biology II, RWTH AachenAachenGermany

Personalised recommendations