Zoomorphology

, Volume 127, Issue 4, pp 203–212

Innervation patterns of the cerebral nerves in Haminoea hydatis (Gastropoda: Opisthobranchia): a test for intraspecific variability

  • Sid Staubach
  • Peter Schützner
  • Roger P. Croll
  • Annette Klussmann-Kolb
Original Paper

Abstract

This study describes the innervation patterns for the cerebral nerves which project to the cephalic sensory organs (CSOs) in the opisthobranch Haminoea hydatis (Linnaeus 1758) and uses axonal tracing techniques (backfilling) to reveal the central cellular origins for these cerebral nerves. Cell clusters projecting into the cerebral nerves can be defined by their positions in the ganglion relative to other clusters, nerve roots and lobes. The number of cell clusters and the relative sizes of somata are constant in a given cluster, whereas the absolute number of somata and absolute sizes of single somata in a given cluster increase with the size of the animal. Additionally, the invariable morphological characteristics of the cell clusters are used to define criteria for the assessment of possible homology for the clusters innervating the CSOs in Opisthobranchia. The data suggest two different strategies to accommodate the increasing body size; first, the additions of nerve cells and second, the growth of nerve cells.

Keywords

Haminoea hydatis Axonal tracing Cephalic sensory organs Homology Innervation patterns 

Supplementary material

435_2008_64_MOESM1_ESM.xls (28 kb)
Table of the number of specimen, shell size calculated by the product of length and breadth in mm2 and maximum diameter of somata (in μm) within the cerebral clusters projecting into the N2 (27.5 kb)

References

  1. Altman JS, Tyrer NM (1980) Filling selected neurons with cobalt through cut nerves. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques: insect nervous system. Springer, New York, pp 357–372Google Scholar
  2. Arbas EA (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38. doi:10.1146/annurev.ne.14.030191.000301 PubMedCrossRefGoogle Scholar
  3. Audesirk TE (1979) Oral mechanoreceptors in Tritonia diomedea. J Comp Physiol 130:71–78. doi:10.1007/BF02582975 CrossRefGoogle Scholar
  4. Bicker G, Davis WJ, Matera EM (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchea californica. J Comp Physiol 149:235–250. doi:10.1007/BF00619217 CrossRefGoogle Scholar
  5. Boudko DY, Switzer-Dunlap M, Hadfield MG (1999) Cellular and subcellular structure of anterior sensory pathways in Phestilla sibogae (Gastropda, Nudibranchia). J Comp Neurol 403:39–52. doi:10.1002/(SICI)1096-9861(19990105)403:1<39::AID-CNE4>3.0.CO;2-BPubMedCrossRefGoogle Scholar
  6. Cash D, Carew TJ (1989) A quantitative-analyses of the development of the central nervous system in juvenile Aplysia californica. J Neurobiol 20(1):25–47. doi:10.1002/neu.480200104 PubMedCrossRefGoogle Scholar
  7. Chase R (2002) In: Behavior and its neural control in gastropod molluscs. Oxford University Press, OxfordGoogle Scholar
  8. Chester CM (1993) Comparative feeding biology of Acteocina canaliculita (SAY, 1826) and Haminoea solitaria (SAY, 1822) (Opisthobranchia, Cephalaspidea). Am Mal Bull 10(1):93–101Google Scholar
  9. Chiasson BJ, Baker MW, Croll RP (1994) Morphological changes and functional recovery following axotomy of a serotonergic cerebrobuccal neurone in the land snail Achatina fulica. J Exp Biol 192:147–167PubMedGoogle Scholar
  10. Coleman CO (2003) “Digital inking”. How to make perfect line drawings on computers. Organisms, Diversity and Evolution, Electronic Supplement. 14, 1–14, http://senckenberg.de/odes/03-14.htm
  11. Croll RP (1983) Gastropod chemoreception. Biol Rev Camb Philos Soc 58(Suppl 3):293–319. doi:10.1111/j.1469-185X.1983.tb00391.x Google Scholar
  12. Croll RP (1987) Identified neurons and cellular homologies. In: Ali MA (ed) Nervous systems in invertebrates. Springer, New York, pp 41–59Google Scholar
  13. Croll RP, Chiasson BJ (1989) Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 280:122–142. doi:10.1002/cne.902800109 PubMedCrossRefGoogle Scholar
  14. Croll RP, Baker M (1990) Axonal regeneration and sprouting following injury to the cerebral-buccal connective in the snail Achatina fulica. J Comp Neurol 300:273–286. doi:10.1002/cne.903000210 PubMedCrossRefGoogle Scholar
  15. Croll RP, Boudko DY, Pires A, Hadfield MG (2003) Transmitter content of cells and fibers in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 314:437–448. doi:10.1007/s00441-003-0778-1 PubMedCrossRefGoogle Scholar
  16. Davis WJ, Matera EM (1982) Chemoreception in gastropod molluscs: electron microscopy of putative receptor cells. J Neurobiol 13(1):79–84. doi:10.1002/neu.480130109 PubMedCrossRefGoogle Scholar
  17. Dayrat B, Tillier S (2002) Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluationof morphological characters. Zool J Linn Soc 135:403–470. doi:10.1046/j.1096-3642.2002.00018.x CrossRefGoogle Scholar
  18. Edlinger K (1980) Zur Phylogenie der chemischen Sinnesorgane einiger Cephalaspidea (Mollusca, Opisthobranchia). Zeitschrift für Zoologie. Systematik Evolutionsforschung 18:241–256Google Scholar
  19. Elliott CJH, Susswein AJ (2002) Comparative neuroethology of feeding control in molluscs. J Exp Biol 205(7):877–896PubMedGoogle Scholar
  20. Emery DG (1992) Fine structure of olfactory epithelia of gastropod molluscs. Microsc Res Tech 22:307–324. doi:10.1002/jemt.1070220402 PubMedCrossRefGoogle Scholar
  21. Fredman SM (1987) Intracellular staining of neurons with nickel-lysine. J Neurosci Methods 20(3):181–194. doi:10.1016/0165-0270(87)90050-1 PubMedCrossRefGoogle Scholar
  22. Goodman CS, Pearson KG, Heitler WJ (1979) Variability of identified neurons in grasshoppers. Comp Biochem Physiol 64A:455–462. doi:10.1016/0300-9629(79)90571-1 CrossRefGoogle Scholar
  23. Gosliner TM (1994) Gastropoda: Opisthobranchia. In: Harrisson FE, Kohn AJ (eds) Microscopic anatomy of invertebrates, 5: Mollusca. Wiley, New York, pp 253–355Google Scholar
  24. Hauser M, Koopowitz H (1987) Age-dependent changes in fluorescent neurons in the brain of Notoplana acticola, a polyclad flatworm. J Exp Zool 241:217–225. doi:10.1002/jez.1402410208 PubMedCrossRefGoogle Scholar
  25. Hayman-Paul D (1991) Pedigrees of neurobehavioral circuits: tracing the evolution of novel behaviors by comparing motor patterns, muscles, and neurons in members of related taxa. Brain Behav Evol 38:226–239. doi:10.1159/000114390 CrossRefGoogle Scholar
  26. Hoffmann H (1939) Mollusca. I Opisthobranchia. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs III (1). Akademische-Verlagsgesellschaft, Leipzig, pp 1–1248Google Scholar
  27. Hubendick B (1951) Recent Lymneidae: their variation, morphology, taxonomy, nomenclature and distribution. Almquist Wiksells Boktryckeriab, StockholmGoogle Scholar
  28. Huber G (1993) On the cerebal nervous system of marine heterobranchia (Gastropoda). J Molluscan Stud 59:381–420. doi:10.1093/mollus/59.4.381 CrossRefGoogle Scholar
  29. Kerkhoven RM, Croll RP, Van Minnen J, Bogerd J, Ramkema MD, Lodder H et al (1991) Axonal mapping of the giant peptidergic neurons VD1 and RPD2 located in the CNS of the pond snail Lymnaea stagnalis, with particular reference to the innervation of the auricle of the heart. Brain Res 565:8–16. doi:10.1016/0006-8993(91)91730-O PubMedCrossRefGoogle Scholar
  30. Kutsch W, Breidbach O (1994) Homologous structures in the nervous systems of Arthropoda. Adv Insect Physiol 24:2–113Google Scholar
  31. Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous system of nudibranch molluscs. J Comp Neurol 499:485–505. doi:10.1002/cne.21111 PubMedCrossRefGoogle Scholar
  32. Ogawa F (1939) The nervous system of earthworm (Pheretima communissima) in different ages. Science reports of the Tohoku Imperial University (Series 4) 8:395–488Google Scholar
  33. Salvini-Plawen L, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of mollusca. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 29–51Google Scholar
  34. Stewart RR, Spergel D, Macagno ER (1986) Segmental differentiation in the leech nervous system: the genesis of cell number in the segmental ganglia of Haemopsis marmorata. J Comp Neurol 253:253–259. doi:10.1002/cne.902530211 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sid Staubach
    • 1
  • Peter Schützner
    • 2
  • Roger P. Croll
    • 3
  • Annette Klussmann-Kolb
    • 1
  1. 1.Bioscience, Institute for Ecology, Evolution and Diversity, Phylogeny and SystematicsJ W Goethe UniversitySiesmayerstraße 70Germany
  2. 2.Biofuture Research Group, Institute of NeurobiologyUniversity of UlmUlmGermany
  3. 3.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations