Advertisement

Zoomorphology

, Volume 127, Issue 1, pp 37–47 | Cite as

Comparative morphological assessment and phylogenetic significance of the wing base articulation in Psylloidea (Insecta, Hemiptera, Sternorrhyncha)

  • David Ouvrard
  • Daniel Burckhardt
  • Adeline Soulier-Perkins
  • Thierry Bourgoin
Original Paper

Abstract

The wing articulation sclerites, as well as wing base environment, of phylogenetically distant Psylloidea taxa were examined by optical and electron microscopy in order to estimate the phylogenetic significance of observed morphological patterns. The basiradial bridge is strongly developed and links the fused humeral plate, basisubcostale, basiradiale and second axillary sclerite to the fused veins R + M + Cu. The proximal median plate has a vertical orientation, which may have a role in moving the wing forward and backward. The weak sclerotization posteriad of the second axillary sclerite and anteriad to the third axillary sclerite facilitates the backward movement of the wing. The horizontal hinge (= basal hinge), the vertical hinge and the torsional hinge are the most important fold- and flexion-lines for the mobility of the wing, whereas humeral folds and the anterior axillary fold-line play a minor role. The basalare presents two horns or processes that are autapomorphic traits for the superfamily Psylloidea. The monophyly of Psylloidea is also supported by the absence of the subalare, of the median notal wing process and of the anterior arm of the third axillary sclerite (lacking articulation with second axillary sclerite). Major interspecific variations are observed in tegula, first axillary sclerite and basalare shape and size. The second distal median plate is absent in Homotoma ficus (Homotomidae) and Glycaspis brimblecombei (Spondyliaspidinae), whereas it is present in Calophya schini (Calophyidae) and Psylla buxi (Psyllinae/Arytaininae); the presence of this sclerite could be a synapomorphy linking Calophyidae and the “psyllid assemblage”.

Keywords

Jumping plant-lice Psylloidea Axillary sclerites Phylogeny Forewing 

Notes

Acknowledgments

We are grateful to Rebeca Álvarez Zagoya, David Hollis and Kathleen L. Chan for providing some of the specimens used in this investigation. We also thank Imre Foldi and Gérard Mascarell for providing help and advice in scanning electron microscopy. Gilbert Hodebert made the line drawing and Laurent Fauvre helped in preparing the illustrations. This work was supported in part by the European Community’s Sixth Framework Programme to D.O. (Marie Curie Outgoing International Fellowship).

References

  1. Betts CR (1986) The comparative morphology of the wings and axillae of selected Heteroptera. J Zool 1:255–282CrossRefGoogle Scholar
  2. Brodskiy AK (1992) Structure, function and evolution of the terga of wing-bearing segments of insects. II. Organizational features of the terga in different orders of insects. Entomol Rev 71(9):8–28Google Scholar
  3. Brodsky AK (1994) The evolution of insect flight. Oxford University Press, OxfordGoogle Scholar
  4. Browne DJ, Scholtz CH (1995) Phylogeny of the families of Scarabaeoidea (Coleoptera) based on characters of the hindwing articulation, hindwing base and wing venation. Syst Entomol 20:145–173CrossRefGoogle Scholar
  5. Browne DJ, Scholtz CH (1998) Evolution of the scarab hindwing articulation and wing base: a contribution toward the phylogeny of the Scarabaeidae (Scarabaeoidea: Coleoptera). Syst Entomol 23(4):307–326CrossRefGoogle Scholar
  6. Browne DJ, Scholtz CH, Kukalovà-Peck J (1993) Phylogenetic significance of wing characters in the Trogidae (Coleoptera: Scarabaeoidea). Afr Entomol 1(2):195–206Google Scholar
  7. Burckhardt D (2005) Biology, ecology, and evolution of gall-inducing Psyllids (Hemiptera: Psylloidea). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, Enfield, pp 143–157Google Scholar
  8. Carayon J (1969) Emploi du noir chlorazol en anatomie microscopique des Insectes. Ann Soc Entomol Fr 5:179–193Google Scholar
  9. Chapman RF (1969) The insects. Structure and function. The English Universities Press LTD, LondonGoogle Scholar
  10. Clark LR (1962) The general biology of Cardiaspina albitextura (Psyllidae) and its abundance in relation to weather and parasitism. Aust J Zool 10(4):537–586CrossRefGoogle Scholar
  11. Crampton GC (1914) On the misuse of the terms parapteron, hypopteron, tegula, squamala, patagium and scapula. J N Y Entomol Soc 22:248–261Google Scholar
  12. Crawford DL (1914) A monograph of the jumping plant-lice or Psyllidae of the new world. Smithsonian Institution, United States National Museum Bulletin, 85. Government Printing Office, WashingtonGoogle Scholar
  13. Fischer H, Ebert E (1999) Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output. J Exp Biol 202(6):711–721PubMedGoogle Scholar
  14. Frye MA, Gray JR (2005) Mechanosensory integration for flight control in insects. In: Christensen TA (ed) Methods in insect sensory neuroscience. CRC Press, Boca Raton, pp 107–128Google Scholar
  15. Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50CrossRefGoogle Scholar
  16. Hodkinson ID (1974) The biology of the Psylloidea (Homoptera): a review. Bull Entomol Res 64:325–339CrossRefGoogle Scholar
  17. Hollis D (2004) Australian Psylloidea: jumping plantlice and lerp insects. Australian Biological Resources Study, CanberraGoogle Scholar
  18. Hörnschemeyer T (1998) Morphologie und Evolution des Flügelenks der Coleoptera und Neuropterida. Bonner Zoologische Monographien, 43. Zoologisches Forschungsinstitut und Museum Alexander Koenig, BonnGoogle Scholar
  19. Hörnschemeyer T (2002) Phylogenetic significance of the wing-base of the Holometabola (Insecta). Zoolog Scripta 31(1):17–29CrossRefGoogle Scholar
  20. Ivanov VD, Kozlov MV (1987) Comparative analysis of pterothoracic musculature of caddis-flies (Insecta Trichoptera) (in Russian). Zool Zh 66(10):1484–1498Google Scholar
  21. Knight KL, Laffoon JL (1970) A mosquito taxonomic glossary. IV. Adult thoracic appendages. Mosq Systemat Newslett 2(4):165–177Google Scholar
  22. Kukalovà-Peck J (1991) Fossil history and the evolution of hexapod structures. In: Naumann ID, CSIRO (ed) The insects of Australia, 2nd edn. Melbourne University Press, Melbourne, Australia, pp 141–179Google Scholar
  23. Lefeuvre JC (1969) Recherches sur les organes alaires des Blattaria. PhD Thesis. Université de Rennes, Rennes, FranceGoogle Scholar
  24. Maggenti AR, Gardner SL (2005) Online dictionary of invertebrate zoology, Version 2.0. Posted October 20 2005. http://digitalcommons.unl.edu
  25. Matsuda R (1963) Some evolutionary aspects of the insect thorax. Annu Rev Entomol 8:59–76CrossRefGoogle Scholar
  26. Matsuda R (1970) Morphology and evolution of the insect thorax. Memoirs of the Entomological Society of Canada, 76. Entomological Society of Canada, OttawaGoogle Scholar
  27. Matsuda R (1979) Morphologie du thorax et des appendices thoraciques des insectes. In: Grassé P-P (ed) Traité de Zoologie. T. VIII. Fasc. II. Masson, Paris, France, pp. 1–289Google Scholar
  28. Ouvrard D. (2002) Systématique phylogénétique des Hemiptera Psylloidea: morphologie comparée du thorax et structures secondaires des ARNr 18S. Bull Soc Zool Fr 127(4):345–357Google Scholar
  29. Ouvrard D, Bourgoin T, Campbell BC (2002) Comparative morphological assessment of the psyllid pleuron (Insecta, Hemiptera, Sternorrhyncha). J Morphol 252(3):276–290PubMedCrossRefGoogle Scholar
  30. Owen WB (1977) Morphology of the thoracic skeleton and muscles of the mosquito, Culiseta inornata (Williston), (Diptera: Culicidae). J Morphol 153(3):427–460CrossRefGoogle Scholar
  31. Pringle JWS (1957) Insect flight. Cambridge monographs in experimental biology, 9. Cambridge University Press, CambridgeGoogle Scholar
  32. Rheuben M, Kammer A (1987) Structure and innervation of the third axillary muscle of Manduca relative to its role in turning flight. J Exp Biol 131(1):373–402PubMedGoogle Scholar
  33. Taylor LH (1918) The thoracic sclerites of Hemiptera and Heteroptera. Ann Entomol Soc Am 11(3):225–254Google Scholar
  34. White IM, Hodkinson ID (1985) Nymphal taxonomy and systematics of the Psylloidea (Homoptera). Bull Nat Hist Mus (Entomol) 50(2):153–301Google Scholar
  35. Wootton RJ (1979) Function, homology and terminology in insect wings. Syst Entomol 4:81–93CrossRefGoogle Scholar
  36. Wootton RJ (1992) Functional morphology of insect forewings. Annu Rev Entomol 37(1):113–140CrossRefGoogle Scholar
  37. Yoshizawa K (2002) Phylogeny and higher classification of suborder Psocomorpha (Insecta: Psocodea: ‘Psocoptera’). Zool J Linn Soc 136(3):371–400CrossRefGoogle Scholar
  38. Yoshizawa K (2005) Morphology of Psocomorpha (Psocodea: ‘Psocoptera’). Insecta Matsumurana NS 62:1–44Google Scholar
  39. Yoshizawa K, Saigusa T (2001) Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera). Syst Entomol 26:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Ouvrard
    • 1
    • 2
  • Daniel Burckhardt
    • 2
  • Adeline Soulier-Perkins
    • 1
  • Thierry Bourgoin
    • 1
  1. 1.Département Systématique & Evolution, Muséum national d’Histoire naturelleUSM601 MNHN/UMR5202 CNRSParisFrance
  2. 2.Naturhistorisches MuseumBaselSwitzerland

Personalised recommendations