Zoomorphology

, Volume 126, Issue 3, pp 173–183 | Cite as

Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: a case study in six Triturus species (Amphibia, Salamandridae)

  • Ana Ivanović
  • Tanja D. Vukov
  • Georg Džukić
  • Nataša Tomašević
  • Miloš L. Kalezić
Original Paper

Abstract

As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species: Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive allometric growth of skull elements related to foraging.

Keywords

Geometric morphometrics Skull shape Allometry Developmental rate Phylogeny 

References

  1. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16Google Scholar
  2. Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317Google Scholar
  3. Arntzen JW (2000) A growth curve for the newt Triturus cristatus. J Herpetol 34:227–232CrossRefGoogle Scholar
  4. Birch JM (1999) Skull allometry in the marine toad, Bufo marinus. J Morphol 241:115–126PubMedCrossRefGoogle Scholar
  5. Bolkay StJ (1928) Die schädel der salamandrinen, mit besonderer rückicht auf ihre systematische bedeutung. Zeitshrift für anatomie und entwicklungsgechichte 86:260–319Google Scholar
  6. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge, UKGoogle Scholar
  7. Bookstein FL (1996) Combining the tools of geometric morphometrics. In: Marcus LF, Corti M, Loy A, Nayulor GJP, Slice DE (eds) Advances in morphometrics. Plenum Press, New York, pp 131–151Google Scholar
  8. Cane WP (1993) The ontogeny of postcranial integration in the common tern, Sterna hirundo. Evolution 47:1138–1151CrossRefGoogle Scholar
  9. Cardini A (2003) The geometry of the marmot (Rodentia: Sciuridae) mandible: phylogeny and patterns of morphological evolution. Syst Biol 52:186–205PubMedCrossRefGoogle Scholar
  10. Cardini A, O’Higgins P (2004) Patterns of morphological evolution in Marmota (Rodentia, Sciuridae): geometric morphometrics of the cranium in the context of marmot phylogeny, ecology and conservation. Biol J Linn Soc 82:385–407CrossRefGoogle Scholar
  11. Dingerkus G, Uhler LD (1977) Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232PubMedGoogle Scholar
  12. Djorović A, Kalezić ML (2000) Paedogenesis in European newts (Triturus: Salamandridae): cranial morphology during ontogeny. J Morphol 243:127–139PubMedCrossRefGoogle Scholar
  13. Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New YorkGoogle Scholar
  14. Duellman WE, Trueb L (1986) Biology of amphibians. McGraw Hill, New YorkGoogle Scholar
  15. Emerson SB, Bramble DM (1993) Scaling, allometry, and skull design. In: Hanken J, Hall BK (eds) The skull. Functional and evolutionary mechanisms, vol 3. The University of Chicago Press, Chicago, pp 384–421Google Scholar
  16. Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MAGoogle Scholar
  17. Griffiths RA (1996) Newts and salamanders of Europe. Academic, San Diego, CAGoogle Scholar
  18. Goodall CR (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc B 53:285–339Google Scholar
  19. Hagström T (1977) Growth studies and ageing methods for adult Triturus vulgaris L. and T. cristatus Laurenti (Urodela, Salamandridae). Zool Scr 6:61–68CrossRefGoogle Scholar
  20. Ivanović A, Kalezić ML, Aleksić I (2005) Morphological integration of cranium and postcranial skeleton during ontogeny of paedomorphic European newts (Triturus vulgaris and T. alpestris). Amphibia-Reptilia 26:485–495CrossRefGoogle Scholar
  21. Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123PubMedCrossRefGoogle Scholar
  22. Larson PM (2004) Chondrocranial morphology and ontogenetic allometry in larval Bufo americanus (Anura, Bufonidae). Zoomorphology 123:95–106CrossRefGoogle Scholar
  23. Larson PM (2005) Ontogeny, phylogeny, and morphology in anuran larvae: morphometric analysis of cranial development and evolution in Rana tadpoles (Anura: Ranidae). J Morphol 264:34–52PubMedCrossRefGoogle Scholar
  24. Lebedkina NS (2004) Evolution of the amphibian skull. In: Kuzmin SL (ed) Advances in amphibian research in the Former Soviet Union, vol 9. Pensoft Publishers, Sofia, pp 1–239Google Scholar
  25. Macgregor HC, Sessions SK, Arntzen JW (1990) An integrative analysis of phylogenetic relationships among newts of the genus Triturus (Family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evol Biol 3:329–373CrossRefGoogle Scholar
  26. McKinney ML, McNamara KJ (1991) Heterochrony: the evolution of ontogeny. Plenum Press, New YorkGoogle Scholar
  27. Miaud C, Guyetant R, Faber H (2000) Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and review of life-history trait variation throughout its range. Herpetologica 56:135–144Google Scholar
  28. Mitteroecker P, Gunz P, Bookstein FL (2005) Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan panicus versus Pan troglodytes. Evol Dev 7:244–258PubMedCrossRefGoogle Scholar
  29. Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199PubMedCrossRefGoogle Scholar
  30. Monteiro LR, Lessa LG, Abe AS (1999) Ontogenetic variation in skull shape of Thrichomys apereoides (Rodentia: Echimyidae). J Mammal 80:102–112CrossRefGoogle Scholar
  31. Moss ML, Young RW (1960) A function approach to craniology. Amer J Phys Anthropol 18:281–292CrossRefGoogle Scholar
  32. Olgun K, Uzum N, Avci A, Miaud C (2005) Age, size and growth of the southern crested newt Triturus karelinii (Strauch 1870) in a population from Bozdag (Western Turkey). Amphibia-Reptilia 26:223–230CrossRefGoogle Scholar
  33. Reilly SM (1990) Comparative ontogeny of cranial shape in salamanders using resistant fit theta rho analysis. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology, Special Publication Number 2, pp 311–321Google Scholar
  34. Rose CS (2003) The developmental morphology of salamander skulls. In: Heatwole H, Davies M (eds) Amphibian biology. Osteology, vol. 5. Surrey Beatty and Sons, Australia, pp 1686–1783Google Scholar
  35. Rohlf FJ (2004) tpsRegr program, Version 1.30, Ecology & Evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/Google Scholar
  36. Rohlf, FJ (2005) tpsDig program, Version 2.04, Ecology & Evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/Google Scholar
  37. Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59CrossRefGoogle Scholar
  38. Schmidt BR, Van Buskirk J (2005) A comparative analysies of predator-induced plasticity in larval Triturus newts. J Evol Biol 18:415–425PubMedCrossRefGoogle Scholar
  39. Sheets HD (2000) Integrated Morphometrics Package (IMP). http://www2.canisius.edu/∼sheets/Google Scholar
  40. Smirnov SV, Vassilieva AB (2003) Skeletal and dental ontogeny in the smooth newt, Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation. Russ J Herp 10:93–110Google Scholar
  41. Steinfartz S, Hwang UW, Tautz D, Öz M, Veith M (2002) Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphibia-Reptilia 23:419–431CrossRefGoogle Scholar
  42. Steinfartz S, Vicario S, Arntzen JW, Caccone A (2006) A bayesian approach and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Zool 306B:1–24CrossRefGoogle Scholar
  43. Titus TA, Larson A (1995) A molecular phylogenetic perspective on the evolutionary radiation of the salamander family Salamandridae. Sys Biol 44:125–151CrossRefGoogle Scholar
  44. Trueb L (1993) Patterns of cranial diversity among the Lissamphibia. In: Hanken J, Hall BK (eds) The skull. Patterns of structural and systematic diversity, vol 2. University of Chicago Press, Chicago, pp 255–343Google Scholar
  45. Van Buskirk J, Schmidt BR (2000) Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology 81:3009–3028CrossRefGoogle Scholar
  46. Weisrock DW, Papenfuss TJ, Macey JR, Litvinchuk SN, Polymeni R, Ugurtas IH, Zhao E, Jowkar H, Larson A (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Mol Phylogenet Evol 41:368–383PubMedCrossRefGoogle Scholar
  47. Yeh J (2002) The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56:2484–2489PubMedGoogle Scholar
  48. Zajc I, Arntzen JW (1999) Phylogenetic relationships of the European newt (genus Triturus) tested with mitochondrial DNA sequence data. Contrib Zool 68:73–81Google Scholar
  49. Zelditch ML (1988) Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42:28–41CrossRefGoogle Scholar
  50. Zelditch ML, Carmichael AC (1989) Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43:814–824CrossRefGoogle Scholar
  51. Zelditch ML, Bookstein FL, Lundrigan BL (1992) Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46:1164–1180CrossRefGoogle Scholar
  52. Zelditch ML, Sheets HD, Fink WL (2000) Spatiotemporal reorganisation of growth rate in the evolution of ontogeny. Evolution 54:1363–1371PubMedGoogle Scholar
  53. Zelditch ML, Moscarella RA (2004) Spatial and temporal dynamics if integration. In: Pigliucci M, Preston K (eds) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, New York, pp 274–301Google Scholar
  54. Zelditch ML, Swiderski DL, Sheets DH, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ana Ivanović
    • 1
  • Tanja D. Vukov
    • 2
  • Georg Džukić
    • 2
  • Nataša Tomašević
    • 2
  • Miloš L. Kalezić
    • 1
    • 2
  1. 1.Institute of Zoology, Faculty of BiologyUniversity of BelgradeBeogradSerbia
  2. 2.Institute for Biological Research “Siniša Stanković”University of BelgradeBeogradSerbia

Personalised recommendations