Zoomorphology

, Volume 126, Issue 3, pp 163–172

Gill-symbiosis in mytilidae associated with wood fall environments

Original Paper

Abstract

Bivalves belonging to the genera Idas and Adipicola were collected from wood fall environments in the west Pacific (Vanuatu islands) between 300 and 890 m depths in 2004. Bacterial symbionts were checked by three complementary techniques: histological and DAPI staining, in situ hybridization (FISH), and TEM. No bacteria were detected inside the gills of the two species, rejecting the endosymbiosis hypothesis. However, results from our study demonstrated the existence of ectosymbionts colonizing microvilli differentiated at the apical surface of the cells constituting the lateral zone of gill filaments. These ectosymbionts are γ-Proteobacteria due to their strong hybridization with the specific probe GAM42; in contrast no hybridization was obtained from either gills or other host tissues by using the oligonucleotide probes specific to α- β- and δ-Proteobacteria. Based on TEM observations, these Gram-negative bacterial symbionts are not methanotrophic due to the lack of concentric stacking of intracellular membranes in their cytoplasm. Such ectosymbionts may represent thioautotrophic bacteria as already described in various Mytilidae from hydrothermal vents and cold seeps. Unfortunately, no phylogenetic analysis could be done in this study to compare their DNA sequence to that of other marine invertebrate symbionts described to date.

Keywords

Ectosymbiosis Mytilidae Wood fall Ultrastructure 

References

  1. Amann RI, Krumholz L, Stahl DA (1990a) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  2. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990b) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  3. Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699CrossRefPubMedGoogle Scholar
  4. Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool 34:79–89Google Scholar
  5. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterburry JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342CrossRefPubMedGoogle Scholar
  6. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347CrossRefGoogle Scholar
  7. Childress JJ, Fisher CR, Brooks JM, Kennicut MC, Bidigare R, Anderson A (1986) A methanotrophic marine molluscan symbiosis: mussels fueled by gas. Science 233:1306–1308CrossRefPubMedGoogle Scholar
  8. Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve Molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929Google Scholar
  9. Deming JW, Reysenbach AL, Macko SA, Smith CR (1997) Evidence of microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep sea-floor: bone-colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170CrossRefPubMedGoogle Scholar
  10. Dias Passos F, de Lima Curi Meserani G, Gros O (2007) Structural and ultrastructural analysis of the gills of the bacterial-bearing bivalve Thyasira falklandica (Smith, 1865). Zoomorphology (in press). doi:10.1007/s00435-007-0034-4
  11. Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938PubMedGoogle Scholar
  12. Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86CrossRefGoogle Scholar
  13. Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh CM, Smith CR (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726CrossRefPubMedGoogle Scholar
  14. Douglas AE (1994) Symbiotic interactions. Oxford University Press, New York, 148pGoogle Scholar
  15. Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350PubMedGoogle Scholar
  16. Dubilier N, Giere O, Amann R (1999) Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochaete Olavius loisae (Annelida). Mar Ecol Prog Ser 178:271–280CrossRefGoogle Scholar
  17. Dufour SC (2005) Gill anatomy and relationship to chemoautotrophic symbiont presence in the bivalve family Thyasiridae. Biol Bull 208:200–212CrossRefPubMedGoogle Scholar
  18. Duperron S, Nadalig T, Caprais J-C, Sibuet M, Fiala-Médioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700CrossRefPubMedGoogle Scholar
  19. Felbeck H, Childress JJ, Somero GN (1981) Calvin benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293CrossRefGoogle Scholar
  20. Fiala-Médioni A, Métivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill filament of an hydrothermal vent mytilid Bathymodiolus sp. Mar Biol 92:65–72CrossRefGoogle Scholar
  21. Fiala-Médioni A, Michalski J-C, Jolles J, Alonso C, Montreuil J (1994) Lysosomic and lysosome activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci 317:239–244Google Scholar
  22. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  23. Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in deep-sea mussels. PSZN I Mar Ecol 14:277–289Google Scholar
  24. Frenkiel L, Gros O, Mouëza M (1996) Gill ultrastructure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidizing bacteria. Mar Biol 125:511–524Google Scholar
  25. Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions. Mar Ecol Prog Ser 208:147–155CrossRefGoogle Scholar
  26. Gabe M (1968) Techniques histologiques. Masson, ParisGoogle Scholar
  27. Giere O (1985) Structure and position of bacterial endosymbionts in the gil-filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology 105:296–301CrossRefGoogle Scholar
  28. Gros O, Frenkiel L, Mouëza M (1998) Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Reprod Dev 34:219–231Google Scholar
  29. Gros O, Darrasse A, Durand P, Frenkiel L, Mouëza M (1996) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330PubMedGoogle Scholar
  30. Gros O, Liberge M, Felbeck H (2003) Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-edosymbionts. Mar Biol 142:57–66Google Scholar
  31. Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064CrossRefPubMedGoogle Scholar
  32. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426CrossRefPubMedGoogle Scholar
  33. Liberge M, Gros O, Frenkiel L (2001) Lysosomes and sulfide-oxidizing bodies in the bacteriocytes of Lucina pectinata, a cytochemical and microanalysis approach. Mar Biol 139:401–409CrossRefGoogle Scholar
  34. Madrid VM, Taylor GT, Scantron MI, Chistoserdov AY (2001) Phylogenetic diversity of bacterial and archeal communities in the anoxic zone of the Cariaco basin. Appl Environ Microbiol 67:1663–1674CrossRefPubMedGoogle Scholar
  35. McKiness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymiodoline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol. doi:10.1007/s00227-005-0065-7
  36. Morse MP, Zardus JD (1997) Bivalvia. In: FW Harrison, AJ Kohn (eds) Microscopic Anatomy of invertebrates. Mollusca II, vol 6A, New YorkGoogle Scholar
  37. Owen G, McCrae JM (1976) Further studies on the latero-frontal tracts of bivalves. Proc R Soc Lond B 194:527–544CrossRefGoogle Scholar
  38. Powel MA, Somero GN (1985) Siulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169:164–181CrossRefGoogle Scholar
  39. Reid RGB (1990) Evolutionnary implications of sulphide-oxidizing symbioses in bivalves. In: Morton B (ed) The Bivalvia. Proceedings of a memorial symposium in honour of Sir CM Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong, pp 127–140Google Scholar
  40. Won YJ, Hallam SJ, O’Mullan D, Pan IL, Buck KR, Vrijenhoek RC (2003) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792CrossRefPubMedGoogle Scholar
  41. Zbinden M, Le Bris N, Gaill F, Compère P (2004) Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes. Mar Ecol Prog Ser 284:237–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Olivier Gros
    • 1
  • Julien Guibert
    • 1
  • Françoise Gaill
    • 2
  1. 1.UMR-CNRS 7138, Systématique-Adaptation-Evolution, Equipe “Symbiose”, UFR des Sciences Exactes et Naturelles, Département de BiologieUniversité des Antilles et de la GuyanePointe-à-Pitre CedexFrance
  2. 2.UMR-CNRS 7138, Systématique-Adaptation-Evolution, Equipe “Adaptation et Evolution en milieux extremes”Université Pierre et Marie CurieParisFrance

Personalised recommendations