Zoomorphology

, Volume 126, Issue 1, pp 53–59 | Cite as

The sperm structure of Embioptera (Insecta) and phylogenetic considerations

  • Romano Dallai
  • Ryuichiro Machida
  • Yoshie Jintsu
  • Francesco Frati
  • Pietro Lupetti
Original Article

Abstract

The sperm structure of two species of Embioptera, Embia savignyi Westwood 1837 and Aposthonia japonica (Okajima 1926), was studied. Spermatozoa of both species exhibit a monolayered acrosome and a layer of material surrounding the sperm cells for most of their length. The presence of a 9+9+2 axoneme provided with accessory microtubules with 16 protofilaments, two accessory bodies and two crystallized mitochondrial derivatives are characters shared with other polyneopteran taxa. The supposed close relationship between Embioptera and Phasmatodea is not supported by characters of the sperm ultrastructure.

Keywords

Ultrastructure Spermatozoa Insect phylogeny Polyneoptera 

References

  1. Afzelius BA, Bellon PL, Lanzavecchia S (1990) Microtubules and their protofilaments in the flagellum of an insect spermatozoon. J Cell Sci 95:207–217PubMedGoogle Scholar
  2. Baccetti B (1982) The spermatozoon of Arthropoda. XXXII. Galloisiana nipponensis (Caudell and King) (Grylloblattodea). In: Ando H (ed) Biology of the Notoptera. Kashiyo-Insatsu, Nagano, pp 71–78Google Scholar
  3. Baccetti B (1987) Spermatozoa and phylogeny in orthopteroid insects. In: Baccetti B (ed) Evolutionary biology of orthopteroid insects. Horwood, Chichester, pp 12–112Google Scholar
  4. Baccetti B, Burrini AG, Dallai R, Pallini V, Periti P, Piantelli F, Rosati F, Selmi G (1973) Structure and function in the spermatozoon of Bacillus rossius. The spermatozoon of Arthropoda. XIX. J Ultrastruct Res Suppl 12:5–73Google Scholar
  5. Baccetti B, Dallai R, Rosati F, Giusti F, Bernini F, Selmi G (1974) The spermatozoon of Arthropoda XXVI. The spermatozoon of Isoptera, Embioptera and Dermaptera. J Microsc 21:159–172Google Scholar
  6. Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. Wiley, New YorkGoogle Scholar
  7. Dallai R, Afzelius BA (1990) Microtubular diversity in insect spermatozoa. Results obtained with a new fixative. J Struct Biol 103:164–179CrossRefGoogle Scholar
  8. Dallai R, Mazzini M (1989) The spermatozoon of the gall-midge Oligotrophidi (Diptera, Cecidomyiidae). Boll Zool 56:13–47Google Scholar
  9. Dallai R, Frati F, Lupetti P, Adis J (2003) Sperm ultrastructure of Mantophasma zephyra (Insecta, Mantophasmatodea). J Morphol 122:67–76Google Scholar
  10. Dallai R, Machida R, Uchifune T, Lupetti P, Frati F (2005) The sperm structure of Galloisiana yuasai (Insecta, Grylloblattodea) and implications for the phylogenetic position of Grylloblattodea. Zoomorphology 124:205–212CrossRefGoogle Scholar
  11. Fausto AM, Belardinelli M, Fochetti R, Mazzini M (2001) Comparative spermatology in Plecoptera (Insecta): an ultrastructural investigation on four species. Arthropod Struct Develop 30:55–62CrossRefGoogle Scholar
  12. Grimaldi D (2001) Insect evolutionary history from Handlirsch to Hennig, and beyond. J Paleontol 75:1152–1160CrossRefGoogle Scholar
  13. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, LondonGoogle Scholar
  14. Hennig W (1981) Insect phylogeny. Wiley, New YorkGoogle Scholar
  15. Klass K-D, Zompro O, Kristensen NP, Adis J (2002) Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science 296:1456–1459PubMedCrossRefGoogle Scholar
  16. Kristensen NP (1989) Insect phylogeny based on morphological evidence. In: Fernholm B, Bremer K, Jörnvall H (eds) Insect phylogeny based on morphological evidence. Elsevier (Biomedical Division), Amsterdam, pp 295–306Google Scholar
  17. Kristensen NP (1991) Phylogeny of extant hexapods. In: Naumann ID (ed) The insects of Australia. CSIRO, Melbourne University Press, Melbourne, pp 125–140Google Scholar
  18. Kukalová-Peck J (1991) Fossil history and the evolution of hexapod structures. In: Naumann ID (ed) The insects of Australia. CSIRO, Melbourne University Press, Melbourne, pp 141–179Google Scholar
  19. Matsuda R (1970) Morphology and evolution of the insect thorax. Mem Entomol Soc Can 76:1–431Google Scholar
  20. Rähle W (1970) Untersuchungen an Kopf und Prothorax vom Embia ramburi Rimsky-Korsakow 1906 (Embioptera: Embiidae). Zool Jahrb Anat Jena 87:248–330Google Scholar
  21. Terry MD, Whiting MF (2005) Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 21:240–257CrossRefGoogle Scholar
  22. Thomas MA, Walsh KA, Wolf MR, McPheron BA, Marden JH (2000) Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior. Proc Natl Acad Sci USA 97:13178–13183PubMedCrossRefGoogle Scholar
  23. Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169CrossRefGoogle Scholar
  24. Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature (London) 421:264–267CrossRefGoogle Scholar
  25. Zompro O (2005) Inter- and intra-ordinal relationships of the Mantophasmatodea, with comments on the phylogeny of polyneopteran orders (Insecta: Polyneoptera). Mitt Geol Paläont Inst Univ Hamburg 89:85–116Google Scholar
  26. Zompro O, Adis J, Weitschat W (2002) A review of the order Mantophasmatodea (Insecta). Zool Anz 241:269–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Romano Dallai
    • 1
  • Ryuichiro Machida
    • 2
  • Yoshie Jintsu
    • 2
  • Francesco Frati
    • 1
  • Pietro Lupetti
    • 1
  1. 1.Department of Evolutionary BiologyUniversity of SienaSienaItaly
  2. 2.Sugadaira Montane Research CenterUniversity of TsukubaUedaJapan

Personalised recommendations