, Volume 125, Issue 4, pp 209–223 | Cite as

Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchrotron radiation based X-ray microtomography

  • Michael Nickel
  • Tilman Donath
  • Michael Schweikert
  • Felix Beckmann
Original Article


Rhythmic body contraction is a phenomenon in the Porifera, which is only partly understood. As a foundation for the understanding of the functional morphology of the highly contractile Tethya wilhelma, we performed a qualitative and quantitative volumetric 3D-analysis of the morphology of a complete non-contracted specimen at resolutions of 5.2 and 6.9 μm, using synchrotron radiation based X-ray computed microtomography (SR-μCT). For the first time, we were able to visualize all three major body structures of a complete poriferan without dissection of the shock-frozen, fixed and contrasted specimen in a near-to-life confirmation: poriferan tissue, mineral skeleton and aquiferous system. Applying a ‘virtual cast’ technique allowed us to analyze the structural details of the complete canal structure. Our results imply an extensive re-circulation of water inside the poriferan due to well-developed by-pass-canals, connecting excurrent and incurrent system. Nevertheless, the oscule region is strictly separated from the incurrent system. Based on our data, we developed a hypothetical flow regime for T. wilhelma, which explains the necessity of by-pass canals to minimize pressure boosts in the canal system during contraction. Additionally, re-circulation optimizes nutrient uptake, within small-sized poriferans, like T. wilhelma. Quantitative analysis allowed us to measure volumes and surfaces, displaying remarkable organizational differences between choanosome and cortex, by means of distribution of morphological elements. The surface-to-volume ratio proved to be very high, underlining the importance of the poriferan pinacoderm. We support a pinacoderm-contraction hypothesis.


Porifera Tethya wilhelma Synchrotron radiation based X-ray microtomography Aquiferous system Contraction 

Supplementary material


  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. Bagby RM (1966) The fine structure of myocytes in the sponges Microciona prolifera (Ellis and Sollander) and Tedania ignis (Duchassaing and Michelotti). J Morphol 118:167–182PubMedCrossRefGoogle Scholar
  3. Bantseev V, Moran KL, Dixon DG, Trevithick JR, Sivak JG (2004) Optical properties, mitochondria, and sutures of lenses of fishes: a comparative study of nine species. Can J Zool 82:Google Scholar
  4. Bavestrello G, Burlando B, Sarà M (1988) The architecture of the canal systems of Petrosia ficiformis and Chondrosia reniformis studied by corrosion casts (Porifera, Demospongiae). Zoomorphology 108:161–166CrossRefGoogle Scholar
  5. Bavestrello G, Burlando B, Sarà M (1995) Corrosion cast reconstruction of the three-dimensional architecture of demosponge canal system. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny: selected symposia and monographs U.Z.I., 8. Mucchi, Modena, 93–110Google Scholar
  6. Bavestrello G, Cerrano C, Corriero G, Sarà M (1998) Three-dimensional architecture of the canal system of some Hadromerids (porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds) Sponge Sciences. Multidisciplinary perspectives. Springer, Tokyo, pp 235–247Google Scholar
  7. Bavestrello G, Calcinai B, Boyer M, Cerrano C, Pansini M (2002) The aquiferous system of two Oceanapia species (Porifera, Demospongiae) studied by corrosion casts. Zoomorphology 121:195–201CrossRefGoogle Scholar
  8. Bavestrello G, Arillo A, Calcinai B, Cerrano C (2003) The aquiferous system of Scolymastra joubini (Porifera, Hexactinellida) studied by corrosion casts. Zoomorphology 122:119–123CrossRefGoogle Scholar
  9. Beckmann F, Bonse U, Biermann T (1999a) New developments in attenuation- and phase-contrast microtomography using synchrotron radiation with low and high photon energies. Proc SPIE 3772:179–187Google Scholar
  10. Beckmann F, Heise K, Kolsch B, Bonse U, Rajewsky MF, Bartscher M, Biermann T (1999b) Three-dimensional imaging of nerve tissue by X-ray phase-contrast microtomography. Biophys J 76:98–102 http://www.biophysj.org/cgi/content/abstract/76/1/98 Google Scholar
  11. Beckmann F, Donath T, Dose T, Lippmann T, Martins RV, Metge J, Schreyer A (2004) Microtomography using synchrotron radiation at DESY: current status and future developments. In: Bonse U (ed) Developments in X-ray tomography IV: SPIE Proceedings 5535, pp 1–10Google Scholar
  12. Beutel RG, Haas A (1998) Larval head morphology of Hydroscapha natans (Coleoptera, Myxophaga) with reference to miniaturization and the systematic position of Hydroscaphidae. Zoomorphology 118:103–116 http://www.springerlink.metapress.com/openurl.asp?genre = articleandid = DOI 10.1007/s004350050061
  13. Bond C (1999) Time-lapse studies of sponge motility and anatomical rearrangements. Mem Queensl Mus 4430:91Google Scholar
  14. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284PubMedCrossRefGoogle Scholar
  15. Bonse U, Busch F (1996) X-ray computed microtomography (μCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65:133–169PubMedCrossRefGoogle Scholar
  16. Boury-Esnault N (1972) Une structure inhalante remarquable des spongiaires: le crible. Etude morphologique et cytologique. Arch Zool exp gén 113:7–23Google Scholar
  17. Boury Esnault N, De Vos L, Donadey C, Vacelet J (1990) Ultrastructure of choanosome and sponge classification. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, pp 237–244Google Scholar
  18. Boury Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55Google Scholar
  19. Burlando B, Bavestrello G, Sarà M, Cocito S (1990) The aquiferous systems of Spongia officinalis and Cliona viridis (Porifera) based on corrosion cast analysis. Boll Zool 57:233–240Google Scholar
  20. Coxson HO, Rogers RM, Whittall KP, D’Yachkova Y, Pare PD, Sciurba FC, Hogg JC (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159:851–856PubMedGoogle Scholar
  21. Fanenbruck M, Harzsch S, Wägele JW (2004) The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc Natl Acad Sci USA, 101:3868–3873 http://www.pnas.org/cgi/content/abstract/101/11/3868
  22. Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera):1. Behavior and Cytology. Zoomorphology 98:89–100Google Scholar
  23. Fitch R (2005) WinSTAT—The Statistics Add-In for Microsoft Excel release 2005.1. Staufen, GermanyGoogle Scholar
  24. Gaino E, Sarà M (1994) Siliceous spicules to Tethya seychellensis (Porifera) support the growth of a green alga: a possible light conducting system. Mar Ecol Prog Ser 108:147–151Google Scholar
  25. Hoernschemeyer T, Beutel RG, Pasop F (2002) Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from X-ray tomography. J Morphol 252:298–314CrossRefGoogle Scholar
  26. Hoffmann F, Larsen O, Rapp HT, Osinga R (2005a) Oxygen dynamics in choanosomal sponge explants. Mar Biol Res 1:160–163Google Scholar
  27. Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005b) An anaerobic world in sponges. Geomicrobiol J 22:1–10CrossRefGoogle Scholar
  28. Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) RECLBL Library users manual: Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of California, LivermoreGoogle Scholar
  29. Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J (2004) Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials 25:1683–1696PubMedCrossRefGoogle Scholar
  30. Kaandorp JA (1994) Fractal modelling. Growth and form in biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Kaandorp JA, Kübler JE (1994) The algorithmic beauty of seeweed, sponges, and corals. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249:992–1000PubMedCrossRefGoogle Scholar
  33. Langenbruch PF, Weissenfels N (1987) Canal systems and choanocyte chambers in freshwater sponges (Porifera Spongillidae). Zoomorphology 107:11–16CrossRefGoogle Scholar
  34. Larsen PS, Riisgard HU (1994) The sponge pump. J Theor Biol 168:53–63CrossRefGoogle Scholar
  35. Lieberkühn N (1895) Neue Beiträge zur Anatomie der Spongie. Arch Anat Physiol 1859:353–358, 515–529Google Scholar
  36. Marshall W (1885) Coelenterata, Porifera, Tetractinellidae; Tafel XLVII. In: Leuckart R (ed) Zoologische Wandttafeln der wirbellosen Thiere. Th. Fischer, KasselGoogle Scholar
  37. Müller M, Marti T, Kriz S (1980) Improved structural preservation by freeze-substiution. In: Brederoo P, de Priesters W (eds) Electron microscopy, vol. II, Proceedings of the 7th European Congress on Electron Microscopy, Leiden, pp 720–721Google Scholar
  38. Nickel M (2001) Cell biology and biotechnology of marine invertebrates—sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157Google Scholar
  39. Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524PubMedCrossRefGoogle Scholar
  40. Nickel M (2006) Like a ‘rolling stone’: quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma. J Exp Biol: submittedGoogle Scholar
  41. Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159PubMedCrossRefGoogle Scholar
  42. Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489Google Scholar
  43. Nickel M, Vitello M, Brümmer F (2002) Dynamics of cellular movements in the locomotion of the sponge Tethya wilhelma. Integr Comp Biol 42:1285Google Scholar
  44. Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional morphology of Tethya species (Porifera):1. Quantitative 3D-analysis of T. wilhelma by synchrotron radiation based X-ray microtomography. Zoomorphology (in press)Google Scholar
  45. Pavans de Ceccatty M (1960) Les structures cellulaires de type nerveux et de type musculaire de l’éponge siliceuse Tethya lyncurium Lmck. C R Acad Sci III 251:1818–1819Google Scholar
  46. Pavans De Ceccatty M (1974) Coordination in sponges the foundations of integration. Am Zoologist 14:895–903Google Scholar
  47. Rasband WS (1997–2005) ImageJ release V. 1.34, Bethesda, Maryland, USA; http://www.rsb.info.nih.gov/ij/
  48. Redi CA, Garagna S, Zuccotti M, Capanna EHZ, (2002) Visual zoology. The Pavia collection of Leuckart’s zoological wall charts (1877). Ibis, ComoGoogle Scholar
  49. Reiswig HM (1971) In-situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50CrossRefGoogle Scholar
  50. Reiswig HM (1975) The aquiferous systems of three marine Demospongiae. J Morphol 145:493–502CrossRefGoogle Scholar
  51. Riisgard HU, Larsen PS (1995) Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biol Rev Camb Philos Soc 70:67–106Google Scholar
  52. Riisgard HU, Thomassen S, Jakobsen H, Weeks JM, Larsen PS (1993) Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus: Effects of temperature on filtration rate and energy cost of pumping. Mar Ecol Prog Ser 96:177–188Google Scholar
  53. Sarà M (1990) Australian Tethya (Porifera, Demospongiae) from the Great Barrier Reef with description of two new species. Boll Zool 57:153–157Google Scholar
  54. Sarà M (1994) A rearrangement of the family Tethyidae (Porifera Hadromerida) with establishment of new genera and description of two new species. Zool J Linn Soc 110:355–371CrossRefGoogle Scholar
  55. Sarà M (1998) A Biogeographic and evolutionary survey of the Genus Tethya (Porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds) Sponge sciences. Multidisciplinary perspectives. Springer, Tokyo, pp 83–94Google Scholar
  56. Sarà M (2002) Family Tethyidae Gray 1848. In: Hooper JNA, Van Soest RMW (eds) Systema Porifera: a Guide to the classification of Sponges. Vol. 1. Kluwer, New York, pp 245–265Google Scholar
  57. Sarà M, Brulando B (1994) Phylogenetic reconstruction and evolutionary hypotheses in the family Tethyidae (Demospongiae). In: van Soest RWM, van Kempen TMG, Braekman J-C (eds) Sponges in time and space: biology, chemistry, paleontology. Amsterdam, pp 111–116Google Scholar
  58. Sarà M, Manara E (1991) Cortical structure and adaptation in the Genus Tethya (Porifera, Demospongiae). In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin Heidelberg New York, pp 306–312Google Scholar
  59. Sarà M, Corriero G, Bavestrello G (1993) Tethya (Porifera, demospongiae) species coexisting in a Maldivian coral reef lagoon: taxonomical, genetic and ecological data. Mar Ecol 14:341–355CrossRefGoogle Scholar
  60. Sarà M, Sarà A, Nickel M, Brümmer F (2001) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15Google Scholar
  61. Schmidt O (1866) Zweites Supplement der Spongien des Adriatischen Meeres enthaltend die Vergleichung der Adriatischen und Britischen Spongiengattungen. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  62. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238PubMedCrossRefGoogle Scholar
  63. Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New YorkGoogle Scholar
  64. Tsuda A, Rogers RA, Hydon PE, J.P. B (2002) Chaotic mixing deep in the lung. Proc Natl Acad Sci USA 99:10173–10178PubMedCrossRefGoogle Scholar
  65. van Soest RWM (2005) World list of extant Porifera: Hadromerida; (V. 16.01.2005). http://www.science.uva.nl/ZMA/Invertebrates/Coel/scirep/Halichondrida.pdf. Cited 01 Nov 2005
  66. van Soest RWM, Boury Esnault N, Janussen D, Hooper JNA (2006) World Porifera database. http://www.vliz.be/vmdcdata/porifera/index.php. Cited 04 Apr 2006
  67. Vogel S (1978) Evidence for one-way valves in the water flow system of sponges. J Exp Biol 76:137–148Google Scholar
  68. Vogel S (1983) Life in moving fluids. The physical biology of flow. Princeton University Press, PrincetonGoogle Scholar
  69. Weissenfels N (1982) Bau und Funktion des Süßwasserschwamms Ephydatia fluviatilis L. (Porifera): IX. Rasterelektronenmikroskopische Histologie und Cytologie. Zoomorphology 100:75–88CrossRefGoogle Scholar
  70. Westneat MW, Betz O, Blob RW, Fezzaa K, Cooper WJ, Lee W-K (2003) Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299:558–560 http://www.sciencemag.org/cgi/content/abstract/299/5606/558 Google Scholar
  71. Wilson HV (1910) A study on some epithelioid membranes in monaxonid sponges. J Exp Zool 9:536–571Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Nickel
    • 1
  • Tilman Donath
    • 2
  • Michael Schweikert
    • 1
  • Felix Beckmann
    • 2
  1. 1.Department of Zoology, Biological InstituteUniversity of StuttgartStuttgartGermany
  2. 2.GKSS-Research CenterGeesthachtGermany

Personalised recommendations