, Volume 125, Issue 1, pp 1–12 | Cite as

Origin and differentiation of nephridia in the Onychophora provide no support for the Articulata

  • Georg MayerEmail author
Original Article


Comparative morphology currently permits no unambiguous decision on the primary homology of the nephridia of Annelida and Arthropoda. In order to obtain additional information on this subject, ultrastructure of morphogenesis and further differentiation of nephridia was studied in the onychophoran Epiperipatus biolleyi (Peripatidae). In this species, the nephridial anlage develops by reorganization of the lateral portion of the embryonic coelomic wall that initially gives rise to a ciliated canal. All other structural components, including the sacculus, merge after the nephridial anlage has been separated from the remaining mesodermal tissue. The nephridial sacculus does not represent a ‘persisting coelomic cavity’, since it arises de novo during embryogenesis. There is no evidence for ‘nephridioblast‘ cells participating in the nephridiogenesis of Onychophora, which is in contrast to the general mode of nephridial formation in Annelida. Available data on nephridiogenesis in euarthropods (Chelicerata, Myriapoda, Crustacea, and Hexapoda) also provide no evidence for nephridia of Annelida and Arthropoda being a synapomorphy of these taxa. These findings accordingly weaken the traditional Articulata hypothesis.


Nephridiogenesis Onychophora Ecdysozoa Articulata Homology 



My sincere thanks are expressed to the staff of the Instituto Nacional de Biodiversidad (INBio) in Costa Rica, especially to Alvaro Herrera, for collecting the animals, dissecting, fixing, and sending the material to me. I thank Thomas Bartolomaeus, Gregory Edgecombe, Markus Koch, Hilke Ruhberg and Gerhard Scholtz for giving some critical comments and useful suggestions on the manuscript. Ira Richling kindly helped to get contact to the staff of the INBio. I am thankful to Björn Quast for writing software for a more comfortable handling of the electron microscopic data. This study was supported by the Studienstiftung des deutschen Volkes (D/2002 0033) and the Deutsche Forschungsgemeinschaft (BA 1520/8-1, 8-2; RU 358/4-1, 4-2).


  1. Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493CrossRefPubMedGoogle Scholar
  2. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, OxfordGoogle Scholar
  3. Ax P (1996) Multicellular animals. A new approach to the phylogenetic order in nature, vol 1. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Ax P (2000) Multicellular animals. The phylogenetic system of the metazoa, vol 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Bahl KN (1922) On the development of the ‘enteronephric’ type of nephridial system in earthworms of the genus Pheretima. Q J Microsc Sci 68:67–99Google Scholar
  6. Balavoine G, Adoutte A (2003) The segmented Urbilateria: a testable scenario. Integr Comp Biol 43:137–147Google Scholar
  7. Bartolomaeus T (1989) Ultrastructure and development of the nephridia in Anaitides mucosa (Annelida, Polychaeta). Zoomorphology 109:15–32CrossRefGoogle Scholar
  8. Bartolomaeus T (1997) Structure and development of the nephridia of Tomopteris helgolandica (Annelida). Zoomorphology 117:1–11CrossRefGoogle Scholar
  9. Bartolomaeus T (1999) Structure, function and development of segmental organs in Annelida. Hydrobiologia 402:21–37CrossRefGoogle Scholar
  10. Bartolomaeus T, Ax P (1992) Protonephridia and metanephridia - their relation within the Bilateria. Z zool Syst Evolutionsforsch 30:21–45CrossRefGoogle Scholar
  11. Bartolomaeus T, Quast B (2005) Structure and development of nephridia in Annelida and related taxa. Hydrobiologia 535/536:139–164CrossRefGoogle Scholar
  12. Bartolomaeus T, Ruhberg H (1999) Ultrastructure of the body cavity lining in embryos of Epiperipatus biolleyi (Onychophora, Peripatidae) - a comparison with annelid larvae. Invertebr Biol 118:165–174Google Scholar
  13. Benesch R (1969) Zur Ontogenie und Morphologie von Artemia salina L. Zool Jb Anat 86:307–458Google Scholar
  14. Bergh RS (1898) Nochmals über die Entwicklung der Segmentalorgane. Z wiss Zool 66:435–449Google Scholar
  15. Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17:87–106PubMedGoogle Scholar
  16. Brauer A (1895) Beiträge zur Kenntnis der Entwicklungsgeschichte des Skorpions. II. Z wiss Zool 59:351–433Google Scholar
  17. Brusca C, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Association, SunderlandGoogle Scholar
  18. Budd G (2001) Why are arthropods segmented? Evol Dev 3:332–342CrossRefPubMedGoogle Scholar
  19. Bunke D (2003) Early development of metanephridia in the caudal budding zone of a clitellate annelid, Dero digitata (Naidida): an electron-microscopical study. Acta Zool 84:87–97CrossRefGoogle Scholar
  20. Buxton BH (1917) Notes on the anatomy of arachnids. The coxal glands of the arachnids. The ganglia of the arachnids. J Morphol 29:1–25CrossRefGoogle Scholar
  21. Dohle W (1979) Vergleichende Entwicklungsgeschichte des Mesoderms bei Articulaten. In: Siewing R (ed) Ontogenese und Phylogenese - Erlanger Symposium für Strukturanalyse und Evolutionsforschung, 3.-6. Oktober 1977, Fortschritte in der Zoologischen Systematik und Evolutionsforschung. Paul Parey, Hamburg, pp 120–140Google Scholar
  22. Dohle W (1980) Sind die Myriapoden eine monophyletische Gruppe? Abh Naturwiss Ver Hamburg 23:45–104Google Scholar
  23. Dohle W (1996) Antennata (Tracheata, Monoantennata, Atelocerata). In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 582–600Google Scholar
  24. Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–71CrossRefPubMedGoogle Scholar
  25. Dunger W (1993) Überklasse Antennata. In: Gruner H-E (ed) Lehrbuch der Speziellen Zoologie, Band I: Wirbellose Tiere. 4.Teil: Arthropoda (ohne Insecta). Gustav Fischer, Stuttgart, pp 1031–1159Google Scholar
  26. Evans R (1901) On the Malayan species of Onychophora. Part II. - The development of Eoperipatus weldoni. Q J Microsc Sci 45:41–88Google Scholar
  27. Feustel H (1958) Untersuchungen über die Exkretion bei Collembolen (Ein Beitrag zur Exkretion bei Arthropoden). Z wiss Zool 161:209–238Google Scholar
  28. François J (1969) Anatomie et morphologie céphalique des Protoures (Insecta Apterigota). Mém Mus Nat Hist Nat Paris 49:1–144Google Scholar
  29. François J, Dallai R (1986) Ultrastructure des glandes maxillaires d′Acerentomon affine Bagn. et d′Eosentomon transitorium Berl. (Apterygota: Protura). Int J Insect Morphol Embr 15:201–212CrossRefGoogle Scholar
  30. Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167CrossRefPubMedGoogle Scholar
  31. Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 106:303–326CrossRefPubMedGoogle Scholar
  32. Giribet G, Richter S, Edgecombe GD, Wheeler WC (2005) The position of crustaceans within the arthropoda—evidence from nine molecular loci and morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod relationships. CRC Press, Boca Raton, pp 307–352Google Scholar
  33. Glen EH (1918) A revision of certain points in the early development of Peripatus capensis. Q J Microsc Sci 63:283–292Google Scholar
  34. Goodrich ES (1895) On the coelom, genital ducts, and nephridia. Q J Microsc Sci 37:477–508Google Scholar
  35. Goodrich ES (1932) On the nephridiostome of Lumbricus. Q J Microsc Sci 75:165–179Google Scholar
  36. Goodrich ES (1945) The study of nephridia and genital ducts since 1895. Q J Microsc Sci 86:113–392Google Scholar
  37. Haase A, Stern M, Wächtler K, Bicker G (2001) A tissue-specific marker of Ecdysozoa. Dev Genes Evol 211:428–433CrossRefPubMedGoogle Scholar
  38. Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213CrossRefPubMedGoogle Scholar
  39. Harzsch S, Müller CHG, Wolf H (2005) From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sistergroup relationship of Chelicerata and “Myriapoda” but favour the Mandibulata concept. Dev Genes Evol 215:53–68CrossRefPubMedGoogle Scholar
  40. Haupt J (1969) Zur Feinstruktur der Labialniere des Silberfischchens Lepisma saccharina L. (Thysanura, Insecta). Zool Beitr 15:139–170Google Scholar
  41. Hessler RR, Elofsson R (1991) The excretory system of Hutchinsoniella macracantha (Crustacea: Cephalocarida). J Crust Biol 11:356–367Google Scholar
  42. Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zoologica 33:1–244Google Scholar
  43. Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157CrossRefPubMedGoogle Scholar
  44. Jenner RA, Scholtz G (2005) Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod relationships. CRC Press, Boca Raton, pp 355–385Google Scholar
  45. Johannsen O, Butt FH (1941) Embryology of insects and myriapods. McGraw-Hill Book Company, New YorkGoogle Scholar
  46. Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates that to insects. Dev Genes Evol 214:367–79CrossRefPubMedGoogle Scholar
  47. Kennel J von (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. II. Theil. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 8:1–93Google Scholar
  48. Kingsley JS (1885) Notes on the embryology of Limulus. Q J Microsc Sci 25:521–576Google Scholar
  49. Kingsley JS (1893) The embryology of Limulus—Part II. J Morphol 8:195–268CrossRefGoogle Scholar
  50. Kitamura K, Shimizu T (2000a) Embryonic expression of alkaline phosphatase activity in the oligochaete annelid Tubifex. Invertebr Reprod Dev 37:69–73Google Scholar
  51. Kitamura K, Shimizu T (2000b) Analyses of segment specific expression of alkaline phosphatase activity in the mesoderm of the oligochaete annelid Tubifex: implication for specification of segmental identity. Dev Biol 219:214–223CrossRefPubMedGoogle Scholar
  52. Klausnitzer B (1996) Insecta (Hexapoda), Insekten. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 601–681Google Scholar
  53. Lavallard R, Campiglia S (1983) Sur la ciliature des nephridies chez Peripatus acacioi Marcus et Marcus (Onychophora: Peripatidae). Arch d’Anat Microsc Morphol Exp 72:183–197Google Scholar
  54. Lebedinsky J (1892) Die Entwicklung der Coxaldrüsen bei Phalangium. Zool Anz 15:131–137Google Scholar
  55. Lillie RS (1905) The structure and development of the nephridia of Arenicola cristata Stimpson. Mitt Zool Neapel 17:341–405Google Scholar
  56. Mallatt J, Winchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301PubMedGoogle Scholar
  57. Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phyl Evol 31:178–191CrossRefGoogle Scholar
  58. Manton SM (1928) On the embryology of a mysid crustacean, Hemimysis lamornae. Philos Trans R Soc Lond B Biol Sci 216:363–463CrossRefGoogle Scholar
  59. Manton SM (1934) On the embryology of the crustacean Nebalia bipes. Philos Trans R Soc Lond B Biol Sci 223:163–238Google Scholar
  60. Mayer G, Koch M (2005) Ultrastructure and fate of the nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)—evidence for the onychophoran antennae being modified legs. Arthr Str Dev (in press)Google Scholar
  61. Mayer G, Ruhberg H, Bartolomaeus T (2004) When an epithelium ceases to exist—An ultrastructural study on the fate of the embryonic coelom in Epiperipatus biolleyi (Onychophora, Peripatidae). Acta Zool 85:163–170CrossRefGoogle Scholar
  62. Mayer G, Bartolomaeus T, Ruhberg H (2005) Ultrastructure of mesoderm in embryos of Opisthopatus roseus (Onychophora, Peripatopsidae): revision of the “long germ band” hypothesis for Opisthopatus. J Morphol 263:60–70CrossRefPubMedGoogle Scholar
  63. Meyer A (1929) Die Entwicklung der Nephridien und Gonoblasten bei Tubifex rivulorum Lam. - nebst Bemerkungen zum natürlichen System der Oligochaeten. Z wiss Zool 98:135–178Google Scholar
  64. Moritz M (1959) Zur Embryonalentwicklung der Phalangiiden (Opiliones; Palpatores) II. Die Anlage und Entwicklung der Coxaldrüse bei Phalangium opilio L. Zool Jb Anat 77:229–240Google Scholar
  65. Nielsen C (1997) The phylogenetic position of the Arthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 11–22Google Scholar
  66. Nielsen C (2001) Animal evolution: Interrelationships of the Living Phyla. Oxford University Press, OxfordGoogle Scholar
  67. Okada K (1988) Annelida. In: Kumé M, Dan K (eds) Invertebrate embryology. reprinted by Garland Publishing, New York, pp 192–241Google Scholar
  68. Patten WM, Hazen AP (1900) The development of the coxal gland, branchial cartilages, and genital ducts of Limulus polyphemus. J Morphol 16:459–502CrossRefGoogle Scholar
  69. Penners A (1923) Die Entwicklung des Keimstreifs und die Organbildung bei Tubifex rivulorum Lam. Zool Jb Anat 45:251–308Google Scholar
  70. Pflugfelder O (1948) Entwicklung von Paraperipatus amboinensis n. sp. Zool Jb Anat 69:443–492Google Scholar
  71. Pflugfelder O (1980) Onychophora. In: Seidel F (ed) Morphogenese der Tiere, 1. Reihe, Lieferung 4. Gustav Fischer, Jena, pp 13–76Google Scholar
  72. Philippe H, Lartillot N, Brinkmann H (2005) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253CrossRefPubMedGoogle Scholar
  73. Richter S, Scholtz G (2001) Phylogenetic analysis of the Malacostraca (Crustacea). J Zool Syst Evol Res 39:113–136CrossRefGoogle Scholar
  74. Rouse GW, Fauchald K (1995) The articulation of annelids. Zool Scr 24:269–301CrossRefGoogle Scholar
  75. Rouse G, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26:139–204CrossRefGoogle Scholar
  76. Ruppert EE, Smith PR (1988) The functional organisation of filtration nephridia. Biol Rev 63:231–258Google Scholar
  77. Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate biology, 7th edn. Thomson Brooks/Cole, BelmontGoogle Scholar
  78. Schaefer K, Haszprunar G (1997) Anatomy of Laevipilina antarctica, a monoplacophoran limpet (Mollusca) from Antarctic waters. Acta Zool 77:295–314CrossRefGoogle Scholar
  79. Schmidt-Rhaesa A (2003) Old trees, new trees – is there any progress? Zoology 106:291–301CrossRefPubMedGoogle Scholar
  80. Schmidt-Rhaesa A (2004) Ecdysozoa versus Articulata. In: Richter S, Sudhaus W (eds) Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin. Goecke & Evers, Keltern, pp 35–49Google Scholar
  81. Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285CrossRefGoogle Scholar
  82. Schminke HK (1996) Crustacea, Krebse. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 501–581Google Scholar
  83. Scholl G (1963) Embryologische Untersuchungen an Tanaidaceen (Heterotanais oerstedi Kröyer). Zool Jb Anat 80:500–554Google Scholar
  84. Scholl G (1977) Beiträge zur Embryonalentwicklung von Limulus polyphemus L. (Chelicerata, Xiphosura). Zoomorphologie 86:99–154CrossRefGoogle Scholar
  85. Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod Relationships, vol. 24. Chapman & Hall, London, pp 317–332Google Scholar
  86. Scholtz G (2002) The Articulata hypothesis - or what is a segment? Org Divers Evol 2:197–215CrossRefGoogle Scholar
  87. Scholtz G (2003) Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new Panorama of animal evolution. Proceedings of the 18th international congress of zoology. Pensoft, Moscow, pp 489–501Google Scholar
  88. Seaver, EC (2003) Segmentation: mono- or polyphyletic? Int J Dev Biol 47:583–595PubMedGoogle Scholar
  89. Sedgwick A (1887) The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Microsc Sci 27:467–550Google Scholar
  90. Sedgwick A (1888) The development of the Cape species of Peripatus. Part IV. The changes from stage G to birth. Q J Microsc Sci 28:373–396Google Scholar
  91. Seifert G (1979) Considerations about the evolution of excretory organs in terrestrial arthropods. In: Camatini M (ed) Myriapod biology. Academic, London, pp 353–372Google Scholar
  92. Sekiguchi K (1988) Arthropoda. II. Arachnida. In: Kumé M, Dan K (eds) Invertebrate Embryology. Reprinted by Garland Publishing, New York, pp 389–404Google Scholar
  93. Sheldon L (1887) On the development of Peripatus novae-zealandiae. Q J Microsc Sci 28:205–237Google Scholar
  94. Shiino SM (1988) Arthropoda. I. Crustacea. In: Kumé M, Dan K (eds) Invertebrate Embryology. Reprinted by Garland Publishing, New York, pp 333–388Google Scholar
  95. Shimizu T, Nakamoto A (2001) Segmentation in annelids: cellular and molecular basis for metameric body plan. Zool Sci 18:285–298CrossRefGoogle Scholar
  96. Shimizu T, Kitamura K, Arai A, Nakamoto A (2001) Pattern of formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity. Hydrobiologia 463:123–131CrossRefGoogle Scholar
  97. Siewing R (1953) Morphologische Untersuchungen an Tanaidaceen und Lophogastriden. Z wiss Zool 157:333–426Google Scholar
  98. Smith PR, Ruppert EE (1988) Nephridia. Micr Mar 4:231–262Google Scholar
  99. Staff F (1910) Organogenetische Untersuchungen über Criodrilus lacuum. Arbeiten aus dem Zoologischen Institut der Universität Wien 18:227–256Google Scholar
  100. Storch V, Ruhberg H (1993) Onychophora. In: Harrison FW, Rice ME (eds) Microscopic Anatomy of Invertebrates, vol 12. Wiley-Liss, New York, pp 11–56Google Scholar
  101. Storch V, Ruhberg H, Alberti G (1978) Zur Ultrastruktur der Segmentalorgane der Peripatopsidae (Onychophora). Zool Jb Anat 100:47–63Google Scholar
  102. Sudhaus W, Rehfeld K (1992) Einführung in die Phylogenetik und Systematik. Gustav Fischer, StuttgartGoogle Scholar
  103. Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225Google Scholar
  104. Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus. Part I. Q J Microsc Sci 88:165–267PubMedGoogle Scholar
  105. Vanderbroek G (1935) Organogénèse du système néphridien chez les oligochètes et plus spécialement chez Eisenia foetida Sav. Rec Inst Zool Torley-Rousseau 5:5–72Google Scholar
  106. Vejdovsky F (1892) Entwicklungsgeschichtliche Untersuchungen (Heft III). Die Organogenie der Oligochaeten. J. Otto, Prag, pp 299–360Google Scholar
  107. Wägele J-W (2005) Foundations of Phylogenetic Systematics. Dr Friedrich Pfeil, MünchenGoogle Scholar
  108. Wägele J-W, Misof B (2001) On quality of evidence in phylogeny reconstruction: a reply to Zrzavý’s defence of the “Ecdysozoa” hypothesis. J Zool Syst Evol Res 39:165–176CrossRefGoogle Scholar
  109. Wägele J-W, Erikson T, Lockhart P, Misof B (1999) The Ecdysozoa: artifact or monophylum? J Zool Syst Evol Res 37:211–223CrossRefGoogle Scholar
  110. Weygoldt P (1958) Die Embryonalentwicklung des Amphipoden Gammarus pulex pulex (L). Zool Jb Anat 77:51–110Google Scholar
  111. Weygoldt P (1964) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen (Chelonethi). Z Morphol Ökol Tiere 54:1–106CrossRefGoogle Scholar
  112. Weygoldt P (1965) Vergleichend-embryologische Untersuchungen an Pseudoscorpionen. III. Die Entwicklung von Neobisium muscorum Leach (Neobisiinae, Neobisiidae). Mit dem Versuch einer Deutung der Evolution des embryonalen Pumporgans. Z Morphol Ökol Tiere 55:321–382CrossRefGoogle Scholar
  113. Weygoldt P (1986) Arthropod interrelationships: The phylogenetic-systematic approach. Z zool Syst Evolutionsforsch 24:19–35CrossRefGoogle Scholar
  114. Weygoldt P (1996) Chelicerata, Spinnentiere. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp 449–497Google Scholar
  115. Wiesenmüller B, Rothe H, Henke W (2003) Phylogenetische systematik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  116. With C (1904) The Notostigmata, a new suborder of Acari. Vidensk Medd Naturh Foren København 1904:137–192Google Scholar
  117. Woodring JP (1973) Comparative morphology, functions, and homologies of the coxal glands in oribatid mites (Arachnida: Acari). J Morphol 139: 407–429CrossRefGoogle Scholar
  118. Yoshikura M (1955) Embryological studies on the liphistiid spider Heptathela kumurai. II. Kumamoto J Sci B2:1–86Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Systematik und Evolution der Tiere, Institut für Biologie/ZoologieFreie Universität BerlinBerlinGermany

Personalised recommendations