Advertisement

Zoomorphology

, Volume 124, Issue 1, pp 1–8 | Cite as

Reconstruction of the musculature of Magelona cf. mirabilis (Magelonidae) and Prionospio cirrifera (Spionidae) (Polychaeta, Annelida) by phalloidin labeling and cLSM

  • Anna FilippovaEmail author
  • Günter Purschke
  • Alexander B. Tzetlin
  • Monika C. M. Müller
Original Article

Abstract

Recent investigations have suggested that a lack of circular muscle fibers may be a common situation rather than a rare exception in polychaetes. As part of a comparative survey of polychaete muscle systems, the F-actin musculature subset of Magelona cf. mirabilis and Prionospio cirrifera were labeled with phalloidin and three-dimensionally analyzed and reconstructed by means of cLSM. Obvious similarities are sublongitudinal lateral, circumbuccal, palp retractor, dominating dorsal longitudinal, perpendicular lateral and ventral transverse muscles. Differences between M. cf. mirabilis and P. cirrifera are: (1) two types of prostomial muscles (transversal and longitudinal) in M. cf. mirabilis versus one type (diagonal) in P. cirrifera; (2) one type of palp muscles (longitudinal) in M. cf. mirabilis versus three types (longitudinal, diagonal, circular) in P. cirrifera; (3) five ventral longitudinal muscles (ventromedian, paramedian, ventral) in M. cf. mirabilis versus four (two paramedian, two ventral) in P. cirrifera. Ventral and lateral transverse fibers are present in the thorax, but absent in the abdomen of M. cf. mirabilis. The triangular lumen of the pharynx in M. cf. mirabilis is surrounded by radial muscle fibers; three sets of pharynx diductors attach to its dorsal side. The unique features of P. cirrifera are one pair of brain muscles and segmentally arranged dorsal transverse muscles, the latter located outside the longitudinal muscles. The transverse lateral muscles are restricted to the sides and lie beneath the longitudinal muscles, a pattern described here for the first time. A true, outer layer of circular fibers is absent in both species of Spionida that were investigated.

Keywords

Annelida Polychaeta Body wall Muscle system Ground pattern Evolution 

Notes

Acknowledgements

We are grateful to Prof. Dr. Wilfried Westheide for support and hospitality towards the Russian colleagues during their investigations at the University of Osnabrück. The study of A. Filippova was supported by the Deutscher Akademischer Austauschdienst.

References

  1. Clark WB (1964) Dynamics in metazoan evolution. The origin of the coelom and segments. Clarendon Press, OxfordGoogle Scholar
  2. Clark WB (1981) Locomotion and the phylogeny of the Metazoa. Boll Zool 48:11–28Google Scholar
  3. Dauer DM (1985) Functional morphology and feeding behavior of Paraprionospio pinnata (Polychaeta: Spionidae). Mar Biol 85:143–151CrossRefGoogle Scholar
  4. Dauer DM (1991) Functional morphology and feeding behavior of Polydora commensalis (Polychaeta: Spionidae). Ophelia Suppl 5:607–614Google Scholar
  5. Dauer DM, Ewing RM (1991) Functional morphology and feeding behavior of Malacoceros indicus (Polychaeta: Spionidae). Bull Mar Sci 48:395–400Google Scholar
  6. Dauer DM, Mahon HK, Sarda R (2003) Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae). Hydrobiologia 296:207–213CrossRefGoogle Scholar
  7. Fauchald K, Rouse G (1997) Polychaete systematics: present and past. Zool Scr 26:71–138Google Scholar
  8. Gardiner SL (1988) Respiratory and feeding appendages. In: Westheide W, Hermans CO (eds) The ultrastructure of polychaeta. Microfauna Marina, vol 4. Fisher, Stuttgart, pp 37–43Google Scholar
  9. Gardiner S (1992) General organization, integument, musclulature, coelom and vascular system. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 7. Wiley-Liss, New York, pp 19–52Google Scholar
  10. Gardiner SL, Rieger RM (1980) Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res 213:247–252CrossRefGoogle Scholar
  11. Hermans CO (1969) The systematic position of the Archiannelida. Syst Zool 18:85–102Google Scholar
  12. Ivanov IE, Tzelin AB (1997) Fine structure of the trunk in the polychaete family Phyllodocidae (Annelida, Polychaeta) a functional morphological analysis (in Russia). Dok Akad NAUK 354:272–277bGoogle Scholar
  13. Lanzavecchia G, de Eguileor M, Valvassori R (1988) Muscles. In: Westheide W, Hermans CO (eds) The ultrastructure of polychaeta. Microfauna Marina, vol 4. Fischer, Stuttgart, pp 71–88Google Scholar
  14. McHugh D (1997) Molecular evidence that echiurand and pogonophorans are derived annelids. Proc Natl Acad Sci USA 94:8006–8009Google Scholar
  15. Mettam C (1967) Segmental musculature and parapodial movement of Nereis diversicolor and Nephthys hombergi (Annelida: Polychaeta). J Zool (Lond) 153:245–275Google Scholar
  16. Mettam C (1971) Functional design and evolution of the polychaete Aphrodite aculeata. J Zool (Lond) 163:489–519Google Scholar
  17. Möllers S, Müller MCM (2001) Development of the muscle system in Myzostoma cirriferum (Annelida, Myzostomida). Zoology 94(1):41Google Scholar
  18. Müller MC (1999) Das Nervensystem der Polychaeten: Immunhistochemische Untersuchungen an ausgewählten Taxa. PhD Thesis, Universität OsnabrückGoogle Scholar
  19. Müller MCM, Schmidt-Rhaesa A (2002) Reconstruction of the muscle system in Antygomonas sp. (Kinorhyncha, Cyclorhagida) by phalloidin labelling and cLSM. J Morphol 256:103–110. DOI 10.1002/jmor.10058Google Scholar
  20. Müller MCM, Sterrer W (2004) Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphology 123:169–177. DOI 10.1007/s00435-004-0099-2Google Scholar
  21. Müller MCM, Jochmann R, Schmidt-Rhaesa A (2004) The musculature of horsehair worms (Gordius aquaticus, Paragordius varius, Nematomorpha): F-actin staining and reconstruction by cLSM and TEM. Zoomorphology 123:45–54. DOI 10.1007/s00435-003-0088-xCrossRefGoogle Scholar
  22. Orrhage L (1964) Anatomische und morphologische Studien über die Polychaetenfamilien Spionidae, Disomidae und Poecilochaetidae. Zool Bidr Uppsala 36:386–405Google Scholar
  23. Pilato G (1981) The significance of musculature in the origin of the Annelida. Boll Zool 48:209–226Google Scholar
  24. Purschke G (1993) Structure of the prostomial appendages and the central nervous system in the Protodrilida (Polychaeta). Zoomorphology 113:1–20CrossRefGoogle Scholar
  25. Purschke G (2002) On the ground pattern of Annelida. Org Divers Evol 2:181–196Google Scholar
  26. Purschke G, Tzetlin AB (1996) Dorsal ciliary folds in the polychaete foregut: structure, prevalence and phylogenetic significance. Acta Zool (Stockh) 77:33–49Google Scholar
  27. Rieger RM, Salvenmoser W, Legniti A, Tyler S (1994) Phalloidin-rhodamine preparations of Macrostomum (Plathelminthes): morphology and postembryonic development of the musculature. Zoomorphology 114:133–147CrossRefGoogle Scholar
  28. Rouse G, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26:139–204Google Scholar
  29. Rouse GW, Glasby CJ (2000) Phylogeny. In: Beesly PL, Ross GJB, Glasby CJ (eds) Polychaetes and allies: the southern synthesis. Fauna of Australia, vol 4A. CSIRO Publishing, Melbourne, pp 46–51Google Scholar
  30. Rouse GW, Pleijel F (2001) Polychaetes. Oxford, OxfordGoogle Scholar
  31. Söderström A (1920) Studien über die Polychätenfamilie Spinonidae. Diss. Almquist and Wiksell, Uppsala, pp 1–286Google Scholar
  32. Storch V (1968) Zur vergleichenden Anatomie der segmentalen Muskelsysteme und zur Verwandtschaft der Polychaeten-Familien. Z Morphol Tiere 63:251–342CrossRefGoogle Scholar
  33. Tzetlin A (1987) Structural peculiarities of Pisionidens tchesunovi (Polychaeta) and their possible significance (in Russian). Zool Zh 66:1454–1462Google Scholar
  34. Tzetlin AB (1992) Evolution of the feeding apparatus of the Polychaetes (Annaelida). Dr. of. Sc. Thesis, Faculty of Biology, Moscow State Univ., Moscow:1–475Google Scholar
  35. Tzetlin AB, Filippova A (2004) Muscular system. In: Purschke G Bartolomaeus T (eds) Morphology, molecules, evolution and phylogeny in the polychaeta and related taxa. Hydrobiologia/Dev HydrobiolGoogle Scholar
  36. Tzetlin AB, Purschke G (2004) Pharynx and Intestine. In: Purschke G, Bartolomaeus T (eds) Morphology, molecules, evolution and phylogeny in the polychaeta and related taxa. Hydrobiologia/Dev HydrobiolGoogle Scholar
  37. Tzetlin AB, Dahlgren T, Purschke G (2002a) Ultrastructure of the body wall, body cavity, nephridia and spermatozoa in four species of the Chrysopetalidae (Annelida). Zool Anz 241:37–55Google Scholar
  38. Tzetlin AB, Zhadan A, Ivanov I, Müller MCM, Purschke G (2002b) On the absence of circular muscle elements in the body wall of Dysponetus pygmaeus (Chrysopetalidae, ‘Polychaeta’, Annelida). Acta Zool 83:81–85Google Scholar
  39. Westheide W (1997) The direction of evolution within the Polychaeta. J Nat Hist 31:1–15Google Scholar
  40. Westheide W, Waston Russel C (1992) Ultrastructure of chrysopetalid paleal chaetae (Annelida; Polychaeta). Acta Zool (Stockh) 37:197–202Google Scholar
  41. Wilson RS (2000) Family Magelonidae. In: Beesly PL, Ross GJB, Glasby CJ (eds) Polychaetes and allies: the southern synthesis. Fauna of Australia, vol 4A. CSIRO Publishing, Melbourne, pp 194–195Google Scholar
  42. Worsaae, K (2003) Palp morphology in two species of Prionospio (Polychaeta: Spionidae). Hydrobiologia 496:259–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anna Filippova
    • 1
    Email author
  • Günter Purschke
    • 2
  • Alexander B. Tzetlin
    • 1
  • Monika C. M. Müller
    • 2
  1. 1.Department of Invertebrate ZoologyMoscow State UniversityMoscowRussia
  2. 2.Spezielle Zoologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations