, Volume 122, Issue 4, pp 191–209 | Cite as

The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept

  • Carsten H. G. Müller
  • Jörg Rosenberg
  • Stefan Richter
  • V. Benno Meyer-Rochow
Original Article


The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.


Centipedes Scutigera Facets Cone cells Retina Pigment cells Phylogeny Vision Mandibulata 



For their considerable support we are grateful to Prof. Dr. Ludwig Jonas and his employees working at the Electron Microscopic Centre of the Medical Faculty of the University of Rostock. We also wish to thank Prof. Dr. Ragnar Kinzelbach (University of Rostock) for having suggested some excellent points for the discussion and for having critically read our manuscript. Cand. rer. nat. Andy Sombke provided assistance with sampling of Scutigera coleoptrata on the islands of Ibiza and Šipan. Furthermore, the skilful technical assistance of Dr. Hans Pohl (University of Rostock) with regard to editing our figures and tables is gratefully acknowledged.


  1. Adensamer T (1894a) Über das Auge von Scutigera coleoptrata. Verh Zool Bot Ges Wien 43:8–9Google Scholar
  2. Adensamer T (1894b) Zur Kenntnis der Anatomie und Histologie von Scutigera coleoptrata. Verh Zool Bot Ges Wien 43:573–578Google Scholar
  3. Andersson A (1979) Cerebral sensory organs in ostracodes (Crustacea). Ph.D. Dissertation, University of Lund, LundGoogle Scholar
  4. Ax P (1999) Das System der Metazoa. II. Ein Lehrbuch der phylogenetischen Systematik. Fischer, StuttgartGoogle Scholar
  5. Bähr R (1971) Die Ultrastruktur der Photorezeptoren von Lithobius forficatus L. (Chilopoda: Lithobiidae). Z Zellforsch Mikrosk Anat 116:70–93PubMedGoogle Scholar
  6. Bähr R (1974) Contribution to the morphology of chilopod eyes. Symp Zool Soc Lond 32:388–404Google Scholar
  7. Bedini C (1968) The ultrastructure of the eye of a centipede Polybothrus fasciatus (Newport). Monit Zool Ital (NS) 2:31–47Google Scholar
  8. Bernhard CG, Gemne G, Sällström J (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z Vgl Physiol 67:1–25Google Scholar
  9. Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668CrossRefPubMedGoogle Scholar
  10. Borucki H (1996) Evolution und phylogenetisches System der Chilopoda (Mandibulata, Tracheata). Verh Naturwiss Ver Hamburg (NF) 35:95–226Google Scholar
  11. Claus C (1888) Über den Organismus der Nebaliiden und die systematische Stellung der Leptostraken. Arb Zool Inst Wien 8:1–148Google Scholar
  12. Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M (2001) Hox genes and the phylogeny of the arthropods. Curr Biol 11:759–763Google Scholar
  13. Diersch R, Melzer RR, Smola U (1999) Morphology of the compound eyes of two ancestral phyllopods, Triops cancriformis and Lepidurus apus (Notostraca: Triopsidae). J Crustac Biol 19:313–323Google Scholar
  14. Dohle W (1985) Phylogenetic pathways in the Chilopoda. Bijdr Dierk 55:55–66Google Scholar
  15. Dohle W (1998) Myriapod–insect relationships as opposed to an insect–crustacean sister group relationship. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 305–315Google Scholar
  16. Dohle W (2001) Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea + Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr (NS) 37:85–103Google Scholar
  17. Edgecombe GD, Giribet G (2002) Myriapod phylogeny and the relationships of Chilopoda. In: Llorente Bousquets J, Morrone J (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento. Prensas de Ciencias, Universidad Nacional Autónoma de México, pp 143–168Google Scholar
  18. Edgecombe GD, Giribet G, Wheeler WC (1999) Phylogeny of Chilopoda: combining 18S and 28S rRNA sequences and morphology. In: Melic A, de Haro JJ, Mendez M, Ribera I (eds) Evolución y Filogenia de Arthropoda. Bol Soc Entomol Aragonesa 26:293–331Google Scholar
  19. Elofsson R (1976) Rhabdom adaptation and its phylogenetic significance. Zool Scr 5:97–101Google Scholar
  20. Elofsson R, Odselius R (1975) The anostracan rhabdom and the basement membrane. An ultrastructural study of the Artemia compound eye (Crustacea). Acta Zool 56:141–153Google Scholar
  21. Fahrenbach WH (1999) Merostomata. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates, vol 8A. Chelicerate Arthropoda. Wiley, New York, pp 21–115Google Scholar
  22. Fischer A, Horstmann G (1971) Der Feinbau des Auges der Mehlmotte, Ephestia kuehniella Zeller (Lepidoptera, Pyralididae). Z Zellforsch 116:275–304Google Scholar
  23. Friedrich M, Tautz D (2001) Arthropod rDNA phylogeny revisited: a consistency analysis using Monte Carlo simulation. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr (NS) 37:21–40Google Scholar
  24. Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161CrossRefPubMedGoogle Scholar
  25. Gokan N, Meyer-Rochow VB (2000) Morphological comparisons of compound eyes in Scarabaeoidea (Coleoptera) related to the beetles' daily activity maxima and phylogenetic positions. J Agric Sci 45:15–61Google Scholar
  26. Grenacher H (1880) Über die Augen einiger Myriapoden. Zugleich eine Entgegnung an V. Graber. Arch Mikrosk Anat Entwwicklungsmech 18:415–467Google Scholar
  27. Hafner GS, Tokarski TR (1998) Morphogenesis and pattern formation in the retina of the crayfish Procambarus clarkii. Cell Tissue Res 293:535–550PubMedGoogle Scholar
  28. Hallberg E (1977) The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tissue Res 184:45–65PubMedGoogle Scholar
  29. Hallberg E (1982) The fine structure of the compound eye of Argulus foliaceus (Crustacea: Branchiura). Zool Anz 208:227–236Google Scholar
  30. Hallberg E, Elofsson R (1983) The larval compound eye of barnacles. J Crustac Biol 3:17–24Google Scholar
  31. Hallberg E, Elofsson R (1989) Construction of the pigment shield of the crustacean compound eye: a review. J Crustac Biol 9:359–372Google Scholar
  32. Hallberg E, Elofsson R, Grygier MJ (1985) An ascothoracid compound eye (Crustacea). Sarsia 70:167–171Google Scholar
  33. Hanström B (1926). Eine genetische Studie über die Augen und Sehzentren von Turbellarien, Anneliden und Arthropoden (Trilobiten, Xiphosuren, Eruypteriden, Arachnoiden, Myriapoden, Crustaceen und Insekten). Kungl Sven Vetenskapsakad Handl 4:1–176Google Scholar
  34. Hanström B (1934) Bemerkungen über das Komplexauge der Scutigeriden. Lunds Univ Årsskrift /2 N.F. 30:1–14Google Scholar
  35. Harzsch S, Walossek D (2001) Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol 211:37–43PubMedGoogle Scholar
  36. Hemenway J (1900) The structure of the eye of Scutigera (Cermatia) forceps. Biol Bull 1:205–213Google Scholar
  37. Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473Google Scholar
  38. Horváth G, Clarkson ENK, Pix W (1997) Survey of modern counterparts of schizochroal trilobite eyes: structural and functional similarities and differences. Hist Biol 12:229–263Google Scholar
  39. Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157CrossRefPubMedGoogle Scholar
  40. Joly R (1969) Sur l'ultrastructure de l'oeil de Lithobius forficatus L. (Myriapode Chilopode). C R Acad Sci Paris Ser D 268:3180–3182Google Scholar
  41. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  42. Knoll HJ (1974) Untersuchungen zur Entwicklungsgeschichte von Scutigera coleoptrata L. (Chilopoda). Zool Jahrb Anat 92:47–132Google Scholar
  43. Kraus O (2001) "Myriapoda" and the ancestry of the Hexapoda. In: Deuve T (ed) Origin of the Hexapoda. Ann Soc Entomol Fr 37:105–127Google Scholar
  44. Kraus O, Kraus M (1994) Phylogenetic system of the Tracheata (Mandibulata): on "Myriapoda"-Insecta interrelationships, phylogenetic age and primary ecological niches. Verh Naturwiss Ver Hamburg (NF) 34:5–31Google Scholar
  45. Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573PubMedGoogle Scholar
  46. Levi-Setti R, Clarkson ENK, Horváth G (1998) The eye: paleontology. In: Italian Encyclopedia, part 1. Origin and evolution of life. Instituto della Enciclopedia Italiana, Rome, pp 379–395Google Scholar
  47. Melzer RR, Diersch R, Nicastro D, Smola U (1997) Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium. Naturwissenschaften 84:542–544CrossRefGoogle Scholar
  48. Melzer RR, Michalke C, Smola U (2000) Walking on insect paths? Early ommatidial development in the compound eye of the ancestral crustacean, Triops cancriformis. Naturwissenschaften 87:308–311CrossRefPubMedGoogle Scholar
  49. Meyer-Rochow VB (1971) A crustacean-like organization of insect rhabdoms. Cytobiology 4:241–258Google Scholar
  50. Meyer-Rochow VB (1975) Larval and adult eye of the western rock lobster (Panulirus longipes). Cell Tissue Res 162:439–457PubMedGoogle Scholar
  51. Meyer-Rochow VB, Au D, Keskinen E (2001) Photoreception in fishlike (Branchiura): the eyes of Argulus foliaceus Linne, 1758 and A. coregoni Thorell, 1865. Acta Parasitol 46:321–331Google Scholar
  52. Müller CHG, Rosenberg J, Meyer-Rochow VB (2003) Hitherto undescribed interommatidial exocrine glands in Chilopoda. Afr Invertebrates 44:(in press)Google Scholar
  53. Nagashima T, Meyer-Rochow VB (1995) Ommatidial structure of the adult stonefly Oyamia lugubris (McLachlan) (Plecoptera: Perlidae). Jpn J Entomol 63:503–514Google Scholar
  54. Nilsson D-E (1990) Three unexpected cases of refracting superposition eyes in crustaceans. J Comp Physiol A 167:71–78Google Scholar
  55. Nilsson D-E, Osorio D (1998) Homology and parallelism in arthropod sensory processing. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman and Hall, London, pp 317–332Google Scholar
  56. Odselius R, Elofsson R (1981) The basement membrane of the insect and crustacean compound eye: definition, fine structure, and comparative morphology. Cell Tissue Res 216:205–214PubMedGoogle Scholar
  57. Packard D (1880) The eyes and brain of Cermatia forceps. Am Nat 14:602–603Google Scholar
  58. Paulus HF (1975) The compound eyes of apterygote insects. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 3–19Google Scholar
  59. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–383Google Scholar
  60. Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten: Ein Modell für die Entstehung und Ableitung der ozellären Lateralaugen der Myriapoda von Facettenaugen. Zool Jahrb Syst 113:353–371Google Scholar
  61. Paulus HF (2000) Phylogeny of the Myriapoda–Crustacea–Insecta: a new attempt using photoreceptor structure. J Zool Syst Evol Res 38:189–208CrossRefGoogle Scholar
  62. Richter S (1999) The structure of the ommatidia of the Malacostraca (Crustacea): a phylogenetic approach. Verh Naturwiss Ver Hamburg (NF) 38:161–204Google Scholar
  63. Richter S (2002) The Tetraconata concept: Hexapod–crustacean relationships and the phylogeny of Crustacea. Org Div Evol 2:217–237Google Scholar
  64. Rosenberg J, Henning U, Langer H (2000/01) Diurnal changes of fine structure in the compound eyes of the ghost crab Ocypode ryderi (Crustacea, Decapoda, Ocypodidae). Acta Biol Benrodis 11:53–70Google Scholar
  65. Rosenstadt B (1896) Zur morphologischen Beurtheilung der Augen von Scutigera. Zool Anz 19:369–375Google Scholar
  66. Schönenberger N (1977) The fine structure of the compound eye of Squilla mantis (Stomatopoda). Cell Tissue Res 176:205–233PubMedGoogle Scholar
  67. Shaw R, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds): The biology of Crustacea, vol 3. Neurobiology: structure and function. Academic, New York, pp 291–367Google Scholar
  68. Sograff N (1879) Vorläufige Mittheilungen über die Organisation der Myriapoden. Zool Anz 2:16–18Google Scholar
  69. Spies T (1981) Structure and phylogenetic interpretation of diplopod eyes (Diplopoda). Zoomorphology 98:241–260Google Scholar
  70. Wägele JW (1993) Rejection of the "Uniramia" hypothesis and implications of the Mandibulata concept. Zool Jahrb Syst 120:253–288Google Scholar
  71. Whitington PM (1996) Evolution of neural development in the arthropods. Semin Cell Dev Biol 7:605–614CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Carsten H. G. Müller
    • 1
  • Jörg Rosenberg
    • 2
  • Stefan Richter
    • 3
  • V. Benno Meyer-Rochow
    • 4
    • 5
  1. 1.Institute for Biodiversical Research, General and Systematic ZoologyUniversity of RostockRostockGermany
  2. 2.Faculty of Biology, Department of Animal PhysiologyRuhr-University BochumBochumGermany
  3. 3.Institute for Biology, Comparative ZoologyHumboldt-University BerlinBerlinGermany
  4. 4.Faculty of Engineering and Science (Biology)International University BremenBremenGermany
  5. 5.Department of BiologyUniversity of OuluOuluFinland

Personalised recommendations