Skip to main content
Log in

IV Perflubron emulsion versus autologous transfusion in severe normovolemic anemia: effects on left ventricular perfusion and function

  • Published:
Research in Experimental Medicine

Abstract

Intact cardiac compensatory mechanisms are necessary to maintain adequate tissue oxygenation during acute normovolemic hemodilution (ANH). Left ventricular (LV) perfusion, oxygenation and function were analyzed in an experimental whole-body model of profound ANH (Hct 9%) and effectiveness of a perfluorocarbon-based oxygen carrier in maintaining myocardial oxygenation and function was evaluated. A total of 22 anesthetized dogs were hemodiluted to Hct 20% followed by a simulated, controlled blood-loss phase in which dogs were randomized to either: (1) 1:1 exchange of lost blood with autologous red blood cells (RBC-group), (2) 1:1 exchange with a colloid (control-group) and (3) 1:1 exchange with a colloid after a single dose of 1.8 g/kg BW perflubron iv (PFC-group). Myocardial oxygen delivery and consumption as well as endocardial perfusion were determined using radioactive microspheres. LV myocardial contractility (LV MC) was assessed from: (1) the relationship between maximum rate of LV pressure increase (LVdp/dtmax) and LV enddiastolic volume (LVEDV) and (2) analysis of the LV endsystolic pressure volume relationship (ESPVR). LV diastolic properties were reflected by (1) minimum rate of LV pressure increase (LVdp/dtmin), (2) slope and intercept of the enddiastolic pressure-volume relationship (EDPVR) and (3) the time-constant of isovolumic LV pressure decline “τ ½”. Full sets of LV MC data were obtained from 18 dogs (n =6 per group). LV MC (LVdp/dtmax - LVEDV relation) increased after perflubron administration. At the lowest Hct level, all parameters reflecting LV MC as well as LVdp/dtmin were significantly higher in the PFC-group than in the control-group. After profound normovolemic hemodilution (Hct 9%) superiority of LV MC and LV diastolic properties was found, when myocardial oxygenation was supported by iv perflubron emulsion, a temporary O2 carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baan J, Van Der Velde E, De Bruin H, Smeenk G, Koops J, Van Dijk A, Temmerman D, Senden J, Buis B (1984) Continuous measurement of LV volume in animals and humans by conductance catheter. Circulation 70:812–823

    Article  CAS  PubMed  Google Scholar 

  2. Bagger H (1978) Distribution of maximum coronary blood flow in the LV wall of anesthetized dogs. Acta Physiol Scand 104:48–60

    Article  CAS  PubMed  Google Scholar 

  3. Bowens CJ, Spahn DR, Frasco PE, Smith LR, McRae RL, Leone BJ (1993) Hemodilution induces stable changes in global cardiovascular and regional myocardial function. Anesth Analg 76:1027–1032

    Article  PubMed  Google Scholar 

  4. Bradley EC, Barr JW (1968) Determination of blood volume using indocyanine green dye. Life Sci 7:1001–1007

    Article  CAS  PubMed  Google Scholar 

  5. Braun RD, Linsenmeier RA, Goldstick TK (1992) New perfluorocarbon emulsion improves tissue oxygenation in cat retina. J Appl Physiol 72:1960–1968

    CAS  PubMed  Google Scholar 

  6. Brazier J, Cooper N, Maloney JV, Buckberg G (1974) The adequacy of myocardial oxygen delivery in acute normovolemic anemia. Surgery 75:508–516

    CAS  PubMed  Google Scholar 

  7. Buckberg GD, Luck JC, Payne B, Hoffman JIE, Archie JP, Fixler DE (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604

    CAS  PubMed  Google Scholar 

  8. Clarke TNS, Foex P, Roberts JG, Saner A, Bennett MJ (1980) Circulatory response of the dog to acute isovolumic anaemia in the presence of high-grade adrenergic beta-receptor blockade. Br J Anaesth 52:337–341

    CAS  PubMed  Google Scholar 

  9. Crystal GJ, Kim S, Salem MR (1996) Right and LV O2 uptake during hemodilution and beta-adrenergic stimulation. Am J Physiol 265:H1769–H1777

    Google Scholar 

  10. Crystal GJ, Ruiz JR, Rooney MW (1988) Regional hemodynamics and oxygen supply during isovolemic hemodilution in the absence and presence of high-grade beta adrenergic blockade. J Cardiothorac Anesth 2:772–779

    Article  CAS  PubMed  Google Scholar 

  11. Escobar E, Jones NL, Rapaport E, Murray JF (1966) Ventricular performance in acute normovolemic anemia and effects of beta blockade. Am J Physiol 211:877–884

    CAS  PubMed  Google Scholar 

  12. Fontana JL, Welborn L, Mongan PD, Sturm P, Martin G, Bünger R (1995) Oxygen consumption and cardiovascular function in children during profound intraoperative normovolemic hemodilution. Anesth Analg 80:219–225

    CAS  PubMed  Google Scholar 

  13. Geha AS (1976) Coronary and cardiovascular dynamics and oxygen availability during acute normovolemic anemia. Surgery 80:47–53

    CAS  PubMed  Google Scholar 

  14. Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC, Rankin JS (1985) Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009

    Article  CAS  PubMed  Google Scholar 

  15. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    Article  CAS  PubMed  Google Scholar 

  16. Gross W, Schosser R, Messmer K (1990) MIC-III — an integrated software package to support experiments using the radioactive microsphere technique. Comput Programs Biomed 33:65–85

    Article  CAS  Google Scholar 

  17. Habler O, Kleen M, Podtschaske A, Hutter J, Tiede M, Kemming G, Welte M, Corso C, Messmer K (1996) The effect of acute normovolemic hemodilution (ANH) on myocardial contractility in anesthetized dogs. Anesth Analg 83:451–458

    CAS  PubMed  Google Scholar 

  18. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurement with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–77

    Article  CAS  PubMed  Google Scholar 

  19. Holt J, Rhode E, Kines H (1968) Ventricular volumes and body weight in mammals. Am J Physiol 215:704–715

    CAS  PubMed  Google Scholar 

  20. Jan KM, Chien S (1977) Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 233:106–113

    Google Scholar 

  21. Kass DA (1992) Clinical evaluation of left heart function by conductance catheter technique. Eur Heart J 13:57–64

    Article  PubMed  Google Scholar 

  22. Kass DA, Maughan WL, Guo ZM (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 76:1422–1436

    Article  CAS  PubMed  Google Scholar 

  23. Kass D, Maughan W (1988) From ‘Emax’ to pressure-volume relations: a broader view. Circulation 77:1203–1212

    Article  CAS  PubMed  Google Scholar 

  24. Kleen M, Habler O, Hutter J, Podtschaske A, Tiede M, Kemming G, Welte M, Corso C, Messmer K (1996) Effects of hemodilution on gastric regional perfusion and intramucosal pH. Am J Physiol 271:H1849–H1855

    CAS  PubMed  Google Scholar 

  25. Kreimeier U, Messmer K (1996) Hemodilution in clinical surgery: state of the art 1996. World J Surg 20:1208–1217

    Article  CAS  PubMed  Google Scholar 

  26. Lang RM, Marcus RH, Neumann A, Janzen D, Hansen D, Fujii AM, Borow KM (1992) A time-course study of the effects of pentobarbital, fentanyl, and morphine chloralose on myocardial mechanics. J Appl Physiol 73:143–150

    CAS  PubMed  Google Scholar 

  27. Lankford EB, Kass DA, Maughan WL, Shoukas AA (1990) Does volume catheter parallel conductance vary during a cardiac cycle? Am J Physiol 258:1933–1942

    Google Scholar 

  28. Levy PS, Kim SJ, Eckel PK, Chavez R, Ismail EF, Gould SA, Ramez-Salem M, Crystal GJ (1993) Limit to cardiac compensation during acute normovolemic hemodilution: influence of coronary stenosis. Am J Physiol 265:H340–H349

    CAS  PubMed  Google Scholar 

  29. Little WC (1985) The LV dp/dt max — end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815

    Article  CAS  PubMed  Google Scholar 

  30. Messmer K (1975) Hemodilution. Surg Clin North Am 53:659–678

    Google Scholar 

  31. Messmer K (1987) Acceptable hematocrit levels in surgical patients. World J Surg 11:41–46

    Article  CAS  PubMed  Google Scholar 

  32. Messmer K (1991) Preoperative hemodilution. In: Rossi EC, Simon TL, Moss GS (eds) Principles of transfusion medicine. Baltimore, Williams & Wilkins, pp 405–409

    Google Scholar 

  33. Mirsky I (1984) Assessment of diastolic function: suggested methods and future considerations. Circulation 69:836–841

    Article  CAS  PubMed  Google Scholar 

  34. Murray JF, Rapaport E (1972) Coronary blood flow and myocardial metabolism in acute experimental anaemia. Cardiovasc Res 6:360–367

    Article  CAS  PubMed  Google Scholar 

  35. Ness PM, Bourke DL, Walsh PC (1992) A randomized trial of perioperative hemodilution versus transfusion of preoperatively deposited autologous blood in elective surgery. Transfusion 32:226–230

    Article  CAS  PubMed  Google Scholar 

  36. Nöldge GFE, Priebe H, Geiger K (1992) Splanchnic hemodynamics and oxygen supply during acute normovolemic hemodilution alone and with isoflurane-induced hypotension in anesthetized pigs. Anesth Analg 75:660–674

    PubMed  Google Scholar 

  37. Riva CE, Grunwald JE, Sinclair SH (1983) Laser Doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24:47–51

    CAS  PubMed  Google Scholar 

  38. Sato N, Shen Y-T, Kiuchi K, Shannon RP, Vatner SF (1995) Splenic contraction-induced increases in arterial O2 reduce requirement for CBF in conscious dogs. Am J Physiol 268:H491–H503

    Google Scholar 

  39. Spahn DR, Schmid ER, Seifert B, Pasch T (1996) Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg 82:687–694

    CAS  PubMed  Google Scholar 

  40. Spahn DR, Zollinger A, Schlumpf RB, Stöhr S, Seifert B, Schmid ER, Pasch T (1996) Hemodilution tolerance in elderly patients without known cardiac disease. Anesth Analg 82:681–686

    CAS  PubMed  Google Scholar 

  41. Spence RK (1991) The status of bloodless surgery. Transfus Med Rev 5:274–286

    Article  CAS  PubMed  Google Scholar 

  42. Tangelder GJ, Teirlinck HR, Slaaf DW, Reneman RS (1985) Distribution of blood platelets flowing in arterioles. Am J Physiol 248:H318–H323

    CAS  PubMed  Google Scholar 

  43. Weiskopf RB (1995) Mathematical analysis of isovolemic hemodilution indicates that it can decrease the need for allogeneic blood transfusion. Transfusion 35:37–41

    Article  CAS  PubMed  Google Scholar 

  44. Welte M, Zwissler B, Frey L, Goresch T, Kleen M, Holzer K, Messmer K (1996) Hypovolemic shock and cardiac contractility: assessment by end-systolic pressure-volume relations. Res Exp Med 196:87–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Habler.

Additional information

The study was performed at the Institute for Surgical Research, University of Munich (LMU).

The study was supported in part by Alliance Pharmaceutical Corporation and by the R. W. Johnson Pharmaceutical Research Institute, Raritan, N.J. USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habler, O., Kleen, M., Hutter, J. et al. IV Perflubron emulsion versus autologous transfusion in severe normovolemic anemia: effects on left ventricular perfusion and function. Res. Exp. Med. 197, 301–318 (1997). https://doi.org/10.1007/s004330050079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004330050079

Key words

Navigation