Research in Experimental Medicine

, Volume 197, Issue 4, pp 177–187 | Cite as

Leukotriene receptor blockade in experimental heart failure

  • Michael Pfeifer
  • Frank Muders
  • Andreas Luchner
  • Friedrich Blumberg
  • Günter A. J. Riegger
  • Dietmar Elsner


The pathophysiological role of endogenous leukotrienes in cardiovascular control and the regulation of renal function in congestive heart failure is not known. Therefore, in six conscious dogs with or without heart failure induced by right ventricular pacing (270/min, 10 days) we studied the effects of the leukotriene receptor antagonist FPL55712 on hemodynamics, plasma hormones and renal function. In healthy dogs, FPL55712 (1 mg kg−1 + 0.01 mg kg−1 min−1 i. v.) had little effect on hemodynamics, only reducing heart rate by 11% and insignificantly increasing systemic vascular resistance. Plasma levels of norepinephrine (−57%), renin (−30%) and aldosterone (−24%) were significantly decreased. Renal function parameters were not changed. In dogs with heart failure, FPL55712 significantly increased systemic vascular resistance (+16%) and decreased cardiac output (−15%). Plasma hormone levels were not changed, but renal plasma flow was decreased (−13%) and glomerular filtration rate (+12%), renal vascular resistance (+13%) and filtration fraction (+23%) were increased. It is concluded that there is no evidence for a contribution of endogenous leukotrienes to the systemic vaso-constriction in experimental heart failure. Whether the increase in systemic and renal vascular resistance induced by the leukotriene antagonist in dogs with heart failure reflects a role for endogenous leukotrienes with vasodilator action is still unclear and deserves further investigation.

Key words

Heart failure Leukotrienes FPL55712 Neurohormones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anton AH, Sayre DF (1962) A study of the factor affecting the aluminium-trihydroxy-indole for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360–375PubMedGoogle Scholar
  2. 2.
    Armstrong PW, Terrance PS, Ford SE, DeBold AJ (1986) Rapid right ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 74: 1075–1084PubMedCrossRefGoogle Scholar
  3. 3.
    Augstein J, Farmer JB, Lee TB, Sheard P, Tattersall ML (1973) Selective inhibitor of slow reacting substance of anaphylaxis. Nature 245: 215–217CrossRefGoogle Scholar
  4. 4.
    Badr KF, Baylis C, Pfeffer JM, Pfeffer MA, Soberman RJ, Lewis RA, Austen F, Corey EJ, Brenner BM (1984) Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat. Circ Res 54: 492–499PubMedCrossRefGoogle Scholar
  5. 5.
    Bisgaard H, Kristenson J, Sondergaard J (1982) The effect of leukotriene C4 and D4 on cutaneous blood flow in humans. Prostaglandins 23: 797–801PubMedCrossRefGoogle Scholar
  6. 6.
    Carry M, Korley V, Willerson JT, Weigelt L, Ford-Hutchinsons AW, Tagari P (1992) Increased urinary leukotriene excretion in patients with cardiac ischemia; in vivo evidence for 5-lipoxygenase activation. Circulation 85: 230–236PubMedCrossRefGoogle Scholar
  7. 7.
    Chasin M, Scott C (1978) Inhibition of cyclic nucleotide phosphodiesterase by FPL 55712, an SRS-A antagonist. Biochem Pharmacol 27: 2065–2067PubMedCrossRefGoogle Scholar
  8. 8.
    Dembinska-Kiec A, Simmet T, Peskar BA (1984) Formation of leukotrine C4-like material by rat brain tissue. Eur J Pharmacol 99: 57–62PubMedCrossRefGoogle Scholar
  9. 9.
    Dumitriu D, Prie S, Bernier SG, Guillemette G, Sirois P (1997) Mechanism of action of leukotriene D4 on guinea pig tracheal smooth muscle cells:role of Ca2+ influx and intracellular Ca2+ release. J Pharmacol Exp Ther 280: 1357–1365PubMedGoogle Scholar
  10. 10.
    Dzau VJ, Packer M, Lilly L, Swartz SL, Hollenberg NK, Williams GH (1984) Prostaglandins in severe congestive heart failure. N Engl J Med 310: 347–352PubMedCrossRefGoogle Scholar
  11. 11.
    Eimerl J, Siren AL, Feuerstein G (1986) Systemic and regional hemodynamic effects of leukotrienes D4 and E4 in the conscious rat. Am J Physiol 251: H700–H709PubMedGoogle Scholar
  12. 12.
    Elsner D, Kromer EP, Riegger GAJ (1990) Hemodynamic, hormonal and renal effects of the prostacyclin analogue iloprost in conscious dogs with and without heart failure. J Cardiovasc Pharmacol 16: 601–608PubMedCrossRefGoogle Scholar
  13. 13.
    Fauler J, Frölich JC (1989) Cardiovascular effects of leukotrienes. Cardiovasc Drugs Thre 3: 499–505CrossRefGoogle Scholar
  14. 14.
    Feigen LP (1983) Differential effects of leukotrienes C4, D4, and E4 in the canine renal and mesenteric vascular beds. J Pharmacol Exp Ther 225: 682–687PubMedGoogle Scholar
  15. 15.
    Feuerstein G, Hallenbeck JM (1987) Leukotrienes in health and disease. FASEB J 1: 186–192PubMedGoogle Scholar
  16. 16.
    Fiedler VB, Mardin M, Abram TS (1987) Comparison of cardiac and hemodynamic effects of platelet-activating factor-acether and leukotriene D4 in anesthetized dogs. Basic Res Cardiol 82: 197–208PubMedCrossRefGoogle Scholar
  17. 17.
    Filep J, Földes-Filep E, Frölich JC (1987) Vascular responses to leukotrienes B4, C4 and D4 following FPL55712, indomethacin, saralasin, phentolamine and verapamil in the conscious rat. Br J Pharmacol 90: 431–439PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fleisch JH, Rinkema LE, Marshall WS (1984) Pharmacological receptors for the leukotrienes. Biochem Pharmacol 33: 3919–3922PubMedCrossRefGoogle Scholar
  19. 19.
    Gulbins E, Parekh N, Rauterberg EW, Schlottmann K, Steinhausen M (1991) Cysteinyl leukotriene actions on the microcirculation of the normal and split hydronephrotic rat kidney. Eur J Clin Invest 21: 184–196PubMedCrossRefGoogle Scholar
  20. 20.
    Hirsch AT, Dzau VJ, Creager MA (1987) Baroreceptor function in congestive heart failure: effect of neurohumoral activation and regional vascular resistance. Circulation 75 (Suppl IV): 36–48Google Scholar
  21. 21.
    Holroyde MC, Altounyan PEC, Cole M, Dixon M, Elliott EV (1981) Leukotrienes C and D induce bronchoconstriction in man. Agents Actions 11: 573–574PubMedCrossRefGoogle Scholar
  22. 22.
    Marone G, Giordano A, Cirillo R, Triggiani M, Vigorito C (1988) Cardiovascular and metabolic effects of peptide leukotrienes in man. In: Levi R, Krell RD (eds) Biology of the leukotrienes. Ann NY Acad Sci 524: 321–333Google Scholar
  23. 23.
    Murphy RC, Hammarström S, Samuelsson B (1979) Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76:4275–4279PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ochsner M (1996) The action of the peptidoleukotriene LTD4 on intracellular calcium in rat mesangial cells. Experientia 52: 856–864PubMedCrossRefGoogle Scholar
  25. 25.
    Packer H, Lee WH, Kessler PD (1986) Preservation of glomerular filtration rate in human heart failure by activation of the renin-angiotensin system. Circulation 74: 766–774PubMedCrossRefGoogle Scholar
  26. 26.
    Packer M (1988) Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77: 721–730PubMedCrossRefGoogle Scholar
  27. 27.
    Peck MJ, Piper PJ, Williams TJ (1981) The effect of leukotrienes C4 and D4 on the microvasculature of guinea pig skin. Prostaglandins 21: 315–321PubMedCrossRefGoogle Scholar
  28. 28.
    Prasad K, Kalra J (1988) Oxygen free radicals and heart failure. Angiology 39: 417–420PubMedCrossRefGoogle Scholar
  29. 29.
    Riegger GAJ, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci 62: 465–469PubMedGoogle Scholar
  30. 30.
    Riegger GAJ, Elsner D, Kromer EP, Daffner C, Forssmann WG, Muders F, Pascher EW, Kochsiek K (1988) Atrial natriuretic peptide in congestive heart failure in the dog:plasma levels, cyclic guanosine monophosphate, ultrastructure of atrial myoendocrine cells and hemodynamic, hormonal and renal effects. Circulation 77: 398–406PubMedCrossRefGoogle Scholar
  31. 31.
    Riegger GAJ, Elsner D, Kromer EP (1989) Circulatory and renal control by prostaglandins and renin in low cardiac output in dogs. Am J Physiol 256: H1079–H1086PubMedGoogle Scholar
  32. 32.
    Schalling M, Neil A, Terenius L, Lindgren JA, Miamoto T, Hökfelt T, Samuelsson B (1984) Leukotriene C4 binding sites in the rat central nervous system. Eur J Pharmacol 99: 57–62CrossRefGoogle Scholar
  33. 33.
    Secrest RJ, Olsen EJ, Chapnick BM (1985) Leukotriene D4 relaxes canine renal and superior mesenteric arteries. Circ Res 57: 323–329PubMedCrossRefGoogle Scholar
  34. 34.
    Snyder DW, Bernstein PR (1987) Pharmacologic profile of chemically stable analogs of peptide leukotrienes. Eur J Pharmacol 138: 397–405PubMedCrossRefGoogle Scholar
  35. 35.
    Wallenstein S, Zucker CL, Fleiss JL (1980) Some statistical methods useful in circulation research. Circ Res 47: 1–9PubMedCrossRefGoogle Scholar
  36. 36.
    Welton AF, Hope WC, Tobias LD, Hamilton JG (1981) Inhibition of antigen-induced histamine release and thromboxane synthase by FPL55712, a specific SRS-A antagonist. Biochem Pharmacol 30: 1378–1382PubMedCrossRefGoogle Scholar
  37. 37.
    Zukowska-Grojec Z, Bayorh MA, Kopin IJ, Feuerstein G (1982) Leukotriene D4:cardiovascular and sympathetic effects in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. J Pharmacol Exp Ther 223: 183–187PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Michael Pfeifer
    • 1
  • Frank Muders
    • 1
  • Andreas Luchner
    • 1
  • Friedrich Blumberg
    • 1
  • Günter A. J. Riegger
    • 1
  • Dietmar Elsner
    • 1
  1. 1.Klinik und Poliklinik für Innere Medizin IIUniversitätsklinikumRegensburgGermany

Personalised recommendations