Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 145, Issue 8, pp 2039–2044 | Cite as

Aberrant expression of Sec61α in esophageal cancers

  • Kai Bachmann
  • Maximillian Bockhorn
  • Oliver Mann
  • Florian Gebauer
  • Marco Blessmann
  • Jakob Robert Izbicki
  • Katharina GruppEmail author
Original Article – Cancer Research
  • 99 Downloads

Abstract

Introduction

The heterotrimeric Sec61α translocon complex is topological located in the membrane of the endoplasmic reticulum (ER) and allows protein transport and calcium across the membrane. Recently, aberrant expression of Sec proteins was linked to carcinogenesis and prognosis of patients.

Materials and methods

Here, we analysed the role of Sec61α in esophageal cancer, and we analysed Sec61α staining on a tissue microarray containing more than 600 esophageal cancer specimens by immunohistochemistry.

Results

Sec61α staining was always strong in benign esophagus, but was only found in 5% of interpretable esophageal adenocarcinomas (EACs) and 14.5% of squamous cell carcinomas (ESCCs). Reduced Sec61α staining was not strongly linked to tumor phenotype in both subgroups of esophageal cancers and was unrelated to clinical outcome of patients (EACs: p = 0.8051 and ESCCs: p = 0.2751).

Conclusions

Thus, Sec61α measurement has not an additional prognostic benefit for the patients.

Keywords

Sec61α Esophageal cancer Tissue microarray 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The utilization of tissues and clinical data was according to the Hamburger Krankenhaus Gesetz (§12 HmbKHG) and approved by our local Ethical Committee.

References

  1. Becker T, Bhushan S, Jarasch A, Armache J-P, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckmann R (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326:1369–1373.  https://doi.org/10.1126/science.1178535 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Casper M, Weber SN, Kloor M, Müllenbach R, Grobholz R, Lammert F, Zimmer V (2013) Hepatocellular carcinoma as extracolonic manifestation of Lynch syndrome indicates SEC63 as potential target gene in hepatocarcinogenesis. Scand J Gastroenterol 48:344–351.  https://doi.org/10.3109/00365521.2012.752030 CrossRefPubMedGoogle Scholar
  3. Conti BJ, Devaraneni PK, Yang Z, David LL, Skach WR (2015) Cotranslational stabilization of Sec62/63 within the er Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol Cell 58:269–283.  https://doi.org/10.1016/j.molcel.2015.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Flourakis M, van Coppenolle F, Lehen’kyi VY, Beck B, Skryma R, Prevarskaya N (2006) Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation. FASEB J 20:1215–1217.  https://doi.org/10.1096/fj.05-5254fje CrossRefPubMedGoogle Scholar
  5. Giunti R, Gamberucci A, Fulceri R, Bánhegyi G, Benedetti A (2007) Both translocon and a cation channel are involved in the passive Ca2+ leak from the endoplasmic reticulum: a mechanistic study on rat liver microsomes. Arch Biochem Biophys 462:115–121.  https://doi.org/10.1016/j.abb.2007.03.039 CrossRefPubMedGoogle Scholar
  6. Görlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503CrossRefPubMedGoogle Scholar
  7. Kaiser M-L, Römisch K (2015) Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 10:e0117260.  https://doi.org/10.1371/journal.pone.0117260 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kim H, Bhattacharya A, Qi L (2015) Endoplasmic reticulum quality control in cancer: friend or foe. Semin Cancer Biol 33:25–33.  https://doi.org/10.1016/j.semcancer.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Linxweiler M, Schick B, Zimmermann R (2017) Let’s talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther 2:17002.  https://doi.org/10.1038/sigtrans.2017.2 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lomax RB, Camello C, van Coppenolle F, Petersen OH, Tepikin AV (2002) Basal and physiological Ca(2+) leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons. J Biol Chem 277:26479–26485.  https://doi.org/10.1074/jbc.M201845200 CrossRefPubMedGoogle Scholar
  11. Lu Z, Zhou L, Killela P, Rasheed AB, Di C, Poe WE, McLendon RE, Bigner DD, Nicchitta C, Yan H (2009) Glioblastoma proto-oncogene SEC61gamma is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res 69:9105–9111.  https://doi.org/10.1158/0008-5472.CAN-09-2775 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mirlacher M, Simon R (2010) Recipient block TMA technique. Methods Mol Biol 664:37–44.  https://doi.org/10.1007/978-1-60761-806-5_4 CrossRefPubMedGoogle Scholar
  13. Mori Y, Sato F, Selaru FM, Olaru A, Perry K, Kimos MC, Tamura G, Matsubara N, Wang S, Xu Y, Yin J, Zou T-T, Leggett B, Young J, Nukiwa T, Stine OC, Abraham JM, Shibata D, Meltzer SJ (2002) Instabilotyping reveals unique mutational spectra in microsatellite-unstable gastric cancers. Cancer Res 62:3641–3645PubMedGoogle Scholar
  14. Nyathi Y, Wilkinson BM, Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833:2392–2402.  https://doi.org/10.1016/j.bbamcr.2013.02.021 CrossRefPubMedGoogle Scholar
  15. Ong HL, Liu X, Sharma A, Hegde RS, Ambudkar IS (2007) Intracellular Ca(2+) release via the ER translocon activates store-operated calcium entry. Pflugers Arch 453:797–808.  https://doi.org/10.1007/s00424-006-0163-5 CrossRefPubMedGoogle Scholar
  16. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40.  https://doi.org/10.1146/annurev-biophys-050511-102312 CrossRefPubMedGoogle Scholar
  17. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F (2014) Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat Commun 5:3072.  https://doi.org/10.1038/ncomms4072 CrossRefPubMedGoogle Scholar
  18. Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, Beckmann R, Förster F (2015) Structure of the native Sec61 protein-conducting channel. Nat Commun 6:8403.  https://doi.org/10.1038/ncomms9403 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Roy A, Wonderlin WF (2003) The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J Biol Chem 278:4397–4403.  https://doi.org/10.1074/jbc.M207295200 CrossRefPubMedGoogle Scholar
  20. Schulmann K, Brasch FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, Krüger S, Vogel T, Knaebel H-P, Rüschoff J, Hahn SA, Knebel-Doeberitz MV, Moeslein G, Meltzer SJ, Schackert HK, Tympner C, Mangold E, Schmiegel W (2005) HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology 128:590–599CrossRefPubMedGoogle Scholar
  21. Shao S, Hegde RS (2011) Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol 27:25–56.  https://doi.org/10.1146/annurev-cellbio-092910-154125 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65:371–380CrossRefPubMedGoogle Scholar
  23. Skach WR (2009) Cellular mechanisms of membrane protein folding. Nat Struct Mol Biol 16:606–612.  https://doi.org/10.1038/nsmb.1600 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334:1086–1090.  https://doi.org/10.1126/science.1209235 CrossRefPubMedGoogle Scholar
  25. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, Ma X, Liu L, Zhao Z, Huang X, Fan J, Dong L, Chen G, Ma L, Yang J, Chen L, He M, Li M, Zhuang X, Huang K, Qiu K, Yin G, Guo G, Feng Q, Chen P, Wu Z, Wu J, Ma L, Zhao J, Luo L, Fu M, Xu B, Chen B, Li Y, Tong T, Wang M, Liu Z, Lin D, Zhang X, Yang H, Wang J, Zhan Q (2014) Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509:91–95.  https://doi.org/10.1038/nature13176 CrossRefPubMedGoogle Scholar
  26. van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N (2004) Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 117:4135–4142.  https://doi.org/10.1242/jcs.01274 CrossRefPubMedGoogle Scholar
  27. Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44.  https://doi.org/10.1038/nature02218 CrossRefPubMedGoogle Scholar
  28. Watanabe G, Kaganoi J, Imamura M, Shimada Y, Itami A, Uchida S, Sato F, Kitagawa M (2001) Progression of esophageal carcinoma by loss of EGF-STAT1 pathway. Cancer J 7:132–139PubMedGoogle Scholar
  29. Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R (2003) The Sec61p complex is a dynamic precursor activated channel. Mol Cell 12:261–268CrossRefPubMedGoogle Scholar
  30. Wonderlin WF (2009) Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulum. Pflugers Arch 457:917–930.  https://doi.org/10.1007/s00424-008-0545-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Plastic, Reconstructive and Aesthetic SurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations