Advertisement

Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings

  • Sandra Bonache
  • Irene Esteban
  • Alejandro Moles-Fernández
  • Anna Tenés
  • Laura Duran-Lozano
  • Gemma Montalban
  • Vanessa Bach
  • Estela Carrasco
  • Neus Gadea
  • Adrià López-Fernández
  • Sara Torres-Esquius
  • Francesco Mancuso
  • Ginevra Caratú
  • Ana Vivancos
  • Noemí Tuset
  • Judith Balmaña
  • Sara Gutiérrez-Enríquez
  • Orland Diez
Original Article – Clinical Oncology

Abstract

Purpose

Few and small studies have been reported about multigene testing usage by massively parallel sequencing in European cancer families. There is an open debate about what genes should be tested, and the actionability of some included genes is under research.

Methods

We investigated a panel of 34 known high/moderate-risk cancer genes, including 16 related to breast or ovarian cancer (BC/OC) genes, and 63 candidate genes to BC/OC in 192 clinically suspicious of hereditary breast/ovarian cancer (HBOC) Spanish families without pathogenic variants in BRCA1 or BRCA2 (BRCA1/2).

Results

We identified 16 patients who carried a high- or moderate-risk pathogenic variant in eight genes: 4 PALB2, 3 ATM, 2 RAD51D, 2 TP53, 2 APC, 1 BRIP1, 1 PTEN and 1 PMS2. These findings led to increased surveillance or prevention options in 12 patients and predictive testing in their family members. We detected 383 unique variants of uncertain significance in known cancer genes, of which 35 were prioritized in silico. Eighteen loss-of-function variants were detected in candidate BC/OC genes in 17 patients (1 BARD1, 1 ERCC3, 1 ERCC5, 2 FANCE, 1 FANCI, 2 FANCL, 1 FANCM, 1 MCPH1, 1 PPM1D, 2 RBBP8, 3 RECQL4 and 1 with SLX4 and XRCC2), three of which also carry pathogenic variants in known cancer genes.

Conclusions

Eight percent of the BRCA1/2 negative patients carry pathogenic variants in other actionable genes. The multigene panel usage improves the diagnostic yield in HBOC testing and it is an effective tool to identify potentially new candidate genes.

Keywords

Breast/ovarian hereditary cancer BRCA1 or BRCA2 negative Panel testing by massively parallel sequencing Clinical actionability 

Notes

Acknowledgements

The authors acknowledge the Cellex Foundation for providing research facilities and equipment.

Funding

This work was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, an initiative of the Spanish Ministry of Economy and Innovation partially supported by European Regional Development FEDER Funds: FIS PI12/02585 and PI15/00355 (to O Diez), PI13/01711 and PI16/01218 (to S. Gutiérrez-Enríquez). S. Gutiérrez-Enríquez and S. Bonache are supported by the Miguel Servet Progam (CPII16/00034) and AECC contract, respectively.

Compliance with ethical standards

Conflict interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent, approved by the Clinical Research Ethics Committee of Vall d’Hebron Hospital from Barcelona, was obtained from all individual participants included in the study.

Supplementary material

432_2018_2763_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 KB)
432_2018_2763_MOESM2_ESM.pdf (315 kb)
Supplementary material 2 (PDF 315 KB)
432_2018_2763_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 30 KB)
432_2018_2763_MOESM4_ESM.xlsx (527 kb)
Supplementary material 4 (XLSX 526 KB)

References

  1. Balmaña J, Balaguer F, Cervantes A, Arnold D (2013) Familial risk-colorectal cancer: ESMO clinical practice guidelines. Ann Oncol 24:vi73–vi80.  https://doi.org/10.1093/annonc/mdt209 CrossRefPubMedGoogle Scholar
  2. Borràs E, Pineda M, Cadiñanos J et al (2013) Refining the role of pms2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 50:552–563.  https://doi.org/10.1136/jmedgenet-2012-101511 CrossRefPubMedGoogle Scholar
  3. Bouaoun L, Sonkin D, Ardin M et al (2016) TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 37:865–876.  https://doi.org/10.1002/humu.23035 CrossRefPubMedGoogle Scholar
  4. Buys SS, Sandbach JF, Gammon A et al (2017) A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123:1721–1730.  https://doi.org/10.1002/cncr.30498 CrossRefPubMedGoogle Scholar
  5. Cardoso M, Paulo P, Maia S, Teixeira MR (2016) Truncating and missense PPM1D mutations in early-onset and/or familial/hereditary prostate cancer patients. Genes Chromosom Cancer 55:954–961.  https://doi.org/10.1002/gcc.22393 CrossRefPubMedGoogle Scholar
  6. Castéra L, Krieger S, Rousselin A et al (2014) Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 22:1305–1313.  https://doi.org/10.1038/ejhg.2014.16 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chinnadurai G (2006) CtIP, a candidate tumor susceptibility gene is a team player with luminaries. Biochim Biophys Acta Rev Cancer 1765:67–73.  https://doi.org/10.1016/j.bbcan.2005.09.002 CrossRefGoogle Scholar
  8. Couch FJ, Shimelis H, Hu C et al (2017) Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 3:1190–1196.  https://doi.org/10.1001/jamaoncol.2017.0424 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duran-Lozano L, Montalban G, Bonache S et al (2018) Alternative transcript imbalance underlying breast cancer susceptibility in a family carrying PALB2 c.3201+5G>T. Breast Cancer Res Treat (under second revision) Google Scholar
  10. Easton DF, Pharoah P, Antoniou AC et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243–2257.  https://doi.org/10.1038/nbt.3121 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Easton DF, Lesueur F, Decker B et al (2016) No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet 53:298–309.  https://doi.org/10.1136/jmedgenet-2015-103529 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eliade M, Skrzypski J, Baurand A et al (2017) The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: what are the implications for the management of patients and families ? Oncotarget 8:1957–1971.  https://doi.org/10.18632/oncotarget.12699 CrossRefPubMedGoogle Scholar
  13. Espenschied CR, LaDuca H, Li S et al (2017) Multigene panel testing provides a new perspective on lynch syndrome. J Clin Oncol 35:2568–2575.  https://doi.org/10.1200/JCO.2016.71.9260 CrossRefPubMedGoogle Scholar
  14. Esteban I, Vilaró M, Adrover E et al (2018) Psychological impact of multigene cancer panel testing in patients with a clinical suspicion of hereditary cancer across Spain. Psychooncology 27(6):1530–1537.  https://doi.org/10.1002/pon.4686 CrossRefPubMedGoogle Scholar
  15. Esteban-Jurado C, Franch-Expósito S, Muñoz J et al (2016) The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Hum Genet 24:1501–1505.  https://doi.org/10.1038/ejhg.2016.44 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fachal L, Dunning AM (2015) From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr Opin Genet Dev 30:32–41.  https://doi.org/10.1016/j.gde.2015.01.004 CrossRefPubMedGoogle Scholar
  17. Feliubadaló L, Tonda R, Gausachs M et al (2017) Benchmarking of whole exome sequencing and ad hoc designed panels for genetic testing of hereditary cancer. Sci Rep 7:37984.  https://doi.org/10.1038/srep37984 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frey MK, Sandler G, Sobolev R et al (2017) Multigene panels in Ashkenazi Jewish patients yield high rates of actionable mutations in multiple non-BRCA cancer-associated genes. Gynecol Oncol 146:123–128.  https://doi.org/10.1016/j.ygyno.2017.04.009 CrossRefPubMedGoogle Scholar
  19. Fu W, Ligabue A, Rogers KJ et al (2017) Human RECQ helicase pathogenic variants, population variation and “Missing” diseases. Hum Mutat 38:193–203.  https://doi.org/10.1002/humu.23148 CrossRefPubMedGoogle Scholar
  20. Gutiérrez-Enríquez S, Bonache S, Ruíz De Garibay G et al (2014) About 1% of the breast and ovarian Spanish families testing negative for BRCA1 and BRCA2 are carriers of RAD51D pathogenic variants. Int J Cancer 134:2088–2097.  https://doi.org/10.1002/ijc.28540 CrossRefPubMedGoogle Scholar
  21. Han FF, Guo CL, Liu LH (2013) The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. DNA Cell Biol 32:329–335.  https://doi.org/10.1089/dna.2013.1970 CrossRefPubMedGoogle Scholar
  22. Kraus C, Hoyer J, Vasileiou G et al (2017) Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. Int J Cancer 140:95–102.  https://doi.org/10.1002/ijc.30428 CrossRefPubMedGoogle Scholar
  23. Kurian AW, Hughes E, Handorf EA et al (2017) Breast and ovarian cancer penetrance estimates derived from germline multiple-gene sequencing results in women. JCO Precis Oncol 1–12.  https://doi.org/10.1200/PO.16.00066
  24. Leshno A, Shapira S, Liberman E et al (2016) The APC I1307K allele conveys a significant increased risk for cancer. Int J Cancer 138:1361–1367.  https://doi.org/10.1002/ijc.29876 CrossRefPubMedGoogle Scholar
  25. Lhota F, Zemankova P, Kleiblova P et al (2016) Hereditary truncating mutations of DNA repair and other genes in BRCA1/BRCA2/PALB2-negatively tested breast cancer patients. Clin Genet 90:324–333.  https://doi.org/10.1111/cge.12748 CrossRefPubMedGoogle Scholar
  26. Liang J, Lin C, Hu F et al (2013) APC polymorphisms and the risk of colorectal neoplasia: a huge review and meta-analysis. Am J Epidemiol 177:1169–1179.  https://doi.org/10.1093/aje/kws382 CrossRefPubMedGoogle Scholar
  27. Lipton L, Tomlinson I (2004) The multiple colorectal adenoma phenotype and MYH, a excision repair gene. Clin Gastroenterol Hepatol 2:633–638.  https://doi.org/10.1016/S1542-3565(04)00286-1 CrossRefPubMedGoogle Scholar
  28. Llort G, Chirivella I, Morales R et al (2015) SEOM clinical guidelines in Hereditary Breast and ovarian cancer. Clin Transl Oncol 17:956–961.  https://doi.org/10.1007/s12094-015-1435-3 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mantere T, Winqvist R, Kauppila S et al (2016) Targeted next-generation sequencing identifies a recurrent mutation in MCPH1 associating with hereditary breast cancer susceptibility. PLoS Genet 12:1–14.  https://doi.org/10.1371/journal.pgen.1005816 CrossRefGoogle Scholar
  30. Nakonechny QB, Gilks CB (2016) Ovarian cancer in hereditary cancer susceptibility syndromes. Surg Pathol Clin 9:189–199.  https://doi.org/10.1016/j.path.2016.01.003 CrossRefPubMedGoogle Scholar
  31. Nielsen M, Morreau H, Vasen HF, Hes FJ (2011) MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol 79:1–16.  https://doi.org/10.1016/j.critrevonc.2010.05.011 CrossRefPubMedGoogle Scholar
  32. Paluch-Shimon S, Cardoso F, Sessa C et al (2016) Prevention and screening in BRCA mutation carriers and other breast/ovarian hereditary cancer syndromes: ESMO clinical practice guidelines for cancer prevention and screening. Ann Oncol 27:v103–v110.  https://doi.org/10.1093/annonc/mdw327 CrossRefPubMedGoogle Scholar
  33. Pharoah PDP, Song H, Dicks E et al (2016) PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations. J Natl Cancer Inst 108:1–5.  https://doi.org/10.1093/jnci/djv347 CrossRefGoogle Scholar
  34. Rafnar T, Gudbjartsson DF, Sulem P et al (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43:1104–1107.  https://doi.org/10.1038/ng.955 CrossRefPubMedGoogle Scholar
  35. Ramus SJ, Song H, Dicks E et al (2015) Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 107:1–8.  https://doi.org/10.1093/jnci/djv214 CrossRefGoogle Scholar
  36. Rana HQ, Gelman R, LaDuca H et al (2018) Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. JNCI J Natl Cancer Inst 110:1–8.  https://doi.org/10.1093/jnci/djy001 CrossRefGoogle Scholar
  37. Ruark E, Snape K, Humburg P et al (2013) Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493:406–410.  https://doi.org/10.1038/nature11725 CrossRefPubMedGoogle Scholar
  38. Schroeder C, Faust U, Sturm M et al (2015) HBOC multi-gene panel testing: comparison of two sequencing centers. Breast Cancer Res Treat 152:129–136.  https://doi.org/10.1007/s10549-015-3429-9 CrossRefPubMedGoogle Scholar
  39. Slavin TP, Maxwell KN, Lilyquist J et al (2017) The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer 9:22.  https://doi.org/10.1038/s41523-017-0024-8 CrossRefGoogle Scholar
  40. Suhasini AN, Brosh RMJ (2013) DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol 767:123–144.  https://doi.org/10.1007/978-1-4614-5037-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Susswein LR, Marshall ML, Nusbaum R et al (2016) Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 18:823–832.  https://doi.org/10.1038/gim.2015.166 CrossRefPubMedGoogle Scholar
  42. Tavera-Tapia A, Pérez-Cabornero L, Macías JA et al (2017) Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene. Breast Cancer Res Treat 161:597–604.  https://doi.org/10.1007/s10549-016-4058-7 CrossRefPubMedGoogle Scholar
  43. Tedaldi G, Tebaldi M, Zampiga V et al (2017) Multiple-gene panel analysis in a case series of 255 women with hereditary breast and ovarian cancer. Oncotarget 8:47064–47075.  https://doi.org/10.18632/oncotarget.16791 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ten Broeke SW, Brohet RM, Tops CM et al (2015) Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol 33:319–325.  https://doi.org/10.1200/JCO.2014.57.8088 CrossRefPubMedGoogle Scholar
  45. Tinat J, Bougeard G, Baert-Desurmont S et al (2009) 2009 version of the Chompret criteria for Li Fraumeni Syndrome. J Clin Oncol 27:108–109.  https://doi.org/10.1200/JCO.2009.22.7967 CrossRefGoogle Scholar
  46. Tung N, Domchek SM, Stadler Z et al (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13:581–588.  https://doi.org/10.1038/nrclinonc.2016.90 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305.  https://doi.org/10.1016/S1470-2045(16)30249-2 CrossRefGoogle Scholar
  48. Win AK, Reece JC, Dowty JG et al (2016) Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. Int J Cancer 139:1557–1563.  https://doi.org/10.1002/ijc.30197 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sandra Bonache
    • 1
  • Irene Esteban
    • 2
    • 3
  • Alejandro Moles-Fernández
    • 1
  • Anna Tenés
    • 4
  • Laura Duran-Lozano
    • 1
  • Gemma Montalban
    • 1
  • Vanessa Bach
    • 1
  • Estela Carrasco
    • 2
  • Neus Gadea
    • 2
    • 5
  • Adrià López-Fernández
    • 2
  • Sara Torres-Esquius
    • 2
  • Francesco Mancuso
    • 6
  • Ginevra Caratú
    • 6
  • Ana Vivancos
    • 6
  • Noemí Tuset
    • 7
  • Judith Balmaña
    • 2
    • 5
  • Sara Gutiérrez-Enríquez
    • 1
  • Orland Diez
    • 1
    • 4
  1. 1.Oncogenetics Group, Vall d’Hebron Institute of Oncology-VHIO, Lab 2.02ACELLEX CENTERBarcelonaSpain
  2. 2.High Risk and Cancer Prevention GroupVHIOBarcelonaSpain
  3. 3.Genetics and Microbiology DepartmentUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d’HebronBarcelonaSpain
  5. 5.Medical Oncology DepartmentUniversity Hospital of Vall d’HebronBarcelonaSpain
  6. 6.Cancer Genomics Group, Vall d’Hebron Institute of OncologyVHIOBarcelonaSpain
  7. 7.Medical Oncology DepartmentHospital Universitari Arnau de VilanovaLleidaSpain

Personalised recommendations