Advertisement

MiR-29 silencing modulates the expression of target genes related to proliferation, apoptosis and methylation in Burkitt lymphoma cells

  • Luciano Mazzoccoli
  • Marcela Cristina Robaina
  • Alexandre Gustavo Apa
  • Martin Bonamino
  • Luciana Wernersbach Pinto
  • Eduardo Queiroga
  • Carlos E. Bacchi
  • Claudete Esteves KlumbEmail author
Original Article – Cancer Research

Abstract

Purpose

Burkitt lymphoma (BL) is a B-cell lymphoma frequently diagnosed in children. It is characterized by MYC translocations, which lead to the constitutive expression of the MYC oncogene. MYC contributes to miR-29 repression through an E-box MYC binding site on the miR-29b-1/miR-29a promoter region. We evaluated the role of miR-29a/b/c and their predicted targets in BL pathogenesis.

Methods

Mature sequences of miR-29a/b/c were transfected to the BL cell lines BL41 and Raji, and evaluated for DNMT3B, MCL1, BIM, CDK6, AKT and TCL1 protein expression as well as for MCL-1 and CDK6 mRNA expression. BL cells were treated with 5-aza-2′-deoxycytidine (decitabine) and evaluated for miR29 expressions and methylation status. DNMT3B inhibition was performed by DNMT3B siRNA.

Results

Ectopic expression of miR-29s in BL cells decreased CDK6, DNMT3B, TCL1 and MCL-1 protein levels, but CDK6 and MCL-1 mRNA expression was unaffected by miR-29. Decitabine enhanced miR-29 expression levels and decreased CDK6 protein expression. Additionally, inhibition of DNMT3B by siRNA increased miR-29a/b expression. Notably, the miR-29a/b1 and miR-29b2/c promoter genes showed methylated CpG sequences that were demethylated after decitabine treatments. Furthermore, MYC-negative tumours had higher levels of miR-29 expression compared with MYC-translocated cases, suggesting that MYC regulates miR-29 in BL tumours.

Conclusions

Our results suggest a significant role for miR-29s in BL pathogenesis in altering the expression of targets involved in critical cancer pathways, such as cell cycle control, apoptosis inhibition and DNA methylation. Moreover, methylation-mediated miR-29 epigenetic silencing may occur during BL development.

Keywords

Burkitt lymphoma MYC MiR-29 DNMT Methylation 

Notes

Acknowledgements

We are grateful to all clinicians who followed the patients included in the study and Dr. Lidia Maria Magalhães de Rezende for her collaboration in the histopathological review. This work was supported by grants from INCT para Controle do Câncer: CNPq 573806/2008-0/FAPERJ E26/170.026/2008; Programa de Oncobiologia/Fundação do Câncer and FAPERJ E-26/110.375/2014; SWISS-BRIDGE Foundation, sub-project 1B/2014. LM and MCR were supported by grants from Ministério da Saúde/INCA.

Compliance with ethical standards

Conflict of interest

No conflict of interests to declare.

Supplementary material

432_2017_2575_MOESM1_ESM.tif (10.5 mb)
Effects of miR-29 transient transfections on BL cell viability. Transfection efficiency was evaluated at 8 h and 24 h by qRT-PCR, 2−ΔΔCT method was used to calculate relative expression (a). Cell viability was evaluated in BL 41 and Raji cells 8 h and 24 h after transfection with the Trypan Blue exclusion assay (b). The data represent the median of three independent experiments and the corresponding standard error, * p<0.05; ** p<0.01; *** p<0.001 (TIF 10700 KB)
432_2017_2575_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 32 KB)
432_2017_2575_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 17 KB)

References

  1. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, Tassone P (2015) miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 6:12837–12861.  https://doi.org/10.18632/oncotarget.3805 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233.  https://doi.org/10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts practical applications. Blood 117:5019–5032.  https://doi.org/10.1182/blood-2011-01-293050 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chang TC et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50.  https://doi.org/10.1038/ng.2007.30 CrossRefPubMedGoogle Scholar
  5. Chen L et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403.  https://doi.org/10.1016/j.molcel.2004.12.030 CrossRefPubMedGoogle Scholar
  6. Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30:3404–3415.  https://doi.org/10.1038/onc.2011.60 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Corcoran MM et al (1999) Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 18:6271–6277.  https://doi.org/10.1038/sj.onc.1203033 CrossRefPubMedGoogle Scholar
  8. Cui H et al (2015) Deregulation between miR-29b/c and DNMT3A is associated with epigenetic silencing of the CDH1 gene, affecting cell migration and invasion in gastric cancer. PLoS One 10:e0123926.  https://doi.org/10.1371/journal.pone.0123926 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827Google Scholar
  10. Dang CV (2012) MYC on the path to cancer. Cell 149:22–35.  https://doi.org/10.1016/j.cell.2012.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Falco G et al (2015) Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation. BMC Cancer 15:668.  https://doi.org/10.1186/s12885-015-1661-7 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Douet-Guilbert N et al (2014) Translocation t(2;7)(p11;q21) associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative malignancies. Cancer Genet 207:83–86.  https://doi.org/10.1016/j.cancergen.2014.02.009 CrossRefPubMedGoogle Scholar
  13. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524.  https://doi.org/10.1016/j.cell.2012.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ertel F, Nguyen M, Roulston A, Shore GC (2013) Programming cancer cells for high expression levels of Mcl1. EMBO Rep 14:328–336.  https://doi.org/10.1038/embor.2013.20 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Friedman JM, Jones PA, Liang G (2009) The tumor suppressor microRNA-101 becomes an epigenetic player by targeting the polycomb group protein EZH2 in cancer. Cell Cycle 8:2313–2314.  https://doi.org/10.4161/cc.8.15.9168 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao P et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765.  https://doi.org/10.1038/nature07823 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garzon R et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT. Blood 113(1):6411–6418.  https://doi.org/10.1182/blood-2008-07-170589 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10:400–405.  https://doi.org/10.1038/embor.2009.9 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Giulino-Roth L et al (2012) Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 120:5181–5184.  https://doi.org/10.1182/blood-2012-06-437624 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Han YC et al (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207:475–489.  https://doi.org/10.1084/jem.20090831 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Haralambieva E et al (2004) Interphase fluorescence in situ hybridization for detection of 8q24/MYC breakpoints on routine histologic sections: validation in Burkitt lymphomas from three geographic regions. Genes Chromosom Cancer 40:10–18.  https://doi.org/10.1002/gcc.20009 CrossRefPubMedGoogle Scholar
  22. Hashimoto M et al (2013) Protooncogene TCL1b functions as an Akt kinase co-activator that exhibits oncogenic potency in vivo. Oncogenesis 2:e70.  https://doi.org/10.1038/oncsis.2013.30 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hayette S et al (2003) In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. Blood 102:1549–1550.  https://doi.org/10.1182/blood-2003-04-1220 CrossRefPubMedGoogle Scholar
  24. Hoyer KK et al (2002) Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc Natl Acad Sci USA 99:14392–14397.  https://doi.org/10.1073/pnas.212410199 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hu S et al (2013) MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 121:4021–4031.  https://doi.org/10.1182/blood-2012-10-460063 (quiz 4250) CrossRefPubMedPubMedCentralGoogle Scholar
  26. Iqbal J et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125:1137–1145.  https://doi.org/10.1182/blood-2014-04-566778 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jansson MD, Lund AH (2012) MicroRNA cancer. Mol Oncol 6:590–610.  https://doi.org/10.1016/j.molonc.2012.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kelly GL et al (2014) Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 28:58–70.  https://doi.org/10.1101/gad.232009.113 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kollmann K et al (2016) A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 30:359–360.  https://doi.org/10.1016/j.ccell.2016.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717:77–84.  https://doi.org/10.1016/j.mrfmmm.2011.03.008 CrossRefPubMedGoogle Scholar
  31. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858.  https://doi.org/10.1126/science.1064921 CrossRefPubMedGoogle Scholar
  32. Laine J, Kunstle G, Obata T, Sha M, Noguchi M (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 6:395–407CrossRefPubMedGoogle Scholar
  33. Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414.  https://doi.org/10.1016/j.cell.2007.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24.  https://doi.org/10.1002/path.2251 CrossRefPubMedGoogle Scholar
  35. Lopez-Serra P, Esteller M (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31:1609–1622.  https://doi.org/10.1038/onc.2011.354 CrossRefPubMedGoogle Scholar
  36. Malumbres M (2013) miRNAs and cancer: an epigenetics view. Mol Aspects Med 34:863–874.  https://doi.org/10.1016/j.mam.2012.06.005 CrossRefPubMedGoogle Scholar
  37. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166.  https://doi.org/10.1038/nrc2602 CrossRefPubMedGoogle Scholar
  38. Morita S, Horii T, Kimura M, Ochiya T, Tajima S, Hatada I (2013) miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci 14:14647–14658.  https://doi.org/10.3390/ijms140714647 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140.  https://doi.org/10.1038/sj.onc.1210436 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME (2010) Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 110:1155–1164.  https://doi.org/10.1002/jcb.22630 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mourelatos Z et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728.  https://doi.org/10.1101/gad.974702 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Narducci MG et al (2000) Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Res 60:2095–2100PubMedGoogle Scholar
  43. Noonan EJ et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724.  https://doi.org/10.1038/onc.2009.19 CrossRefPubMedGoogle Scholar
  44. Oliveira LH et al (2015) Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci 106:1264–1277.  https://doi.org/10.1111/cas.12766 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29.  https://doi.org/10.1038/nsmb.1533 CrossRefPubMedGoogle Scholar
  46. Poli E, Zhang J, Nwachukwu C, Zheng Y, Adedokun B, Olopade OI, Han YJ (2015) Molecular subtype-specific expression of microRNA-29c in breast cancer is associated with CpG dinucleotide methylation of the promoter. PloS One 10:.e0142224  https://doi.org/10.1371/journal.pone.0142224
  47. Psathas JN, Thomas-Tikhonenko A (2014) MYC and the art of microRNA maintenance Cold Spring. Harb Perspect Med 4.  https://doi.org/10.1101/cshperspect.a014175 Google Scholar
  48. Queiroga EM et al (2008) Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am J Clin Pathol 130:946–956.  https://doi.org/10.1309/AJCP64YOHAWLUMPK CrossRefPubMedPubMedCentralGoogle Scholar
  49. Robaina MC et al (2015a) Quantitative analysis of CDKN2A methylation, mRNA, and p16(INK4a) protein expression in children and adolescents with Burkitt lymphoma: biological and clinical implications. Leukemia Res 39:248–256.  https://doi.org/10.1016/j.leukres.2014.11.023 CrossRefGoogle Scholar
  50. Robaina MC, Mazzoccoli L, Arruda VO, Reis FR, Apa AG, de Rezende LM, Klumb CE (2015b) Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol 98:200–207.  https://doi.org/10.1016/j.yexmp.2015.03.006 CrossRefPubMedGoogle Scholar
  51. Robaina MC et al (2016) miR-17–92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis. Ann Hematol 95:881–891.  https://doi.org/10.1007/s00277-016-2653-7 CrossRefPubMedGoogle Scholar
  52. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443.  https://doi.org/10.1016/j.ccr.2006.04.020 CrossRefPubMedGoogle Scholar
  53. Salaverria I et al (2014) A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 123:1187–1198.  https://doi.org/10.1182/blood-2013-06-507996 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Santanam U et al (2010) Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 107:12210–12215.  https://doi.org/10.1073/pnas.1007186107 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schiffman JD et al (2011) Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Br J Haematol 155:477–486.  https://doi.org/10.1111/j.1365-2141.2011.08883.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sengupta S et al (2008) MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA 105:5874–5878.  https://doi.org/10.1073/pnas.0801130105 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Takizawa J, Seto M (1999) The TCL1 oncogene is not overexpressed in patients with adult T cell leukemia. Leukemia 13:314CrossRefPubMedGoogle Scholar
  58. Takizawa J et al (1998) Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia Jpn. J Cancer Res 89:712–718Google Scholar
  59. Taub R et al (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841CrossRefPubMedPubMedCentralGoogle Scholar
  60. Teitell MA, Lones MA, Perkins SL, Sanger WG, Cairo MS, Said JW (2005) TCL1 expression and Epstein-Barr virus status in pediatric Burkitt lymphoma. Am J Clin Pathol 124:569–575.  https://doi.org/10.1309/77V7U4E03V69QHRR CrossRefPubMedGoogle Scholar
  61. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132.  https://doi.org/10.1158/0008-5472.CAN-08-0325 CrossRefPubMedGoogle Scholar
  62. Tu J, Liao J, Luk AC, Tang NL, Chan WY, Lee TL (2015) MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development. Int J Biochem Cell Biol 67:115–120.  https://doi.org/10.1016/j.biocel.2015.05.002 CrossRefPubMedGoogle Scholar
  63. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6:1001–1005.  https://doi.org/10.4161/cc.6.9.4209 CrossRefPubMedGoogle Scholar
  64. Wertz IE et al (2011) Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW. Nature 471(7):110–114.  https://doi.org/10.1038/nature09779 CrossRefPubMedGoogle Scholar
  65. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845.  https://doi.org/10.1002/hep.23380 PubMedGoogle Scholar
  66. Yan B, Guo Q, Fu FJ, Wang Z, Yin Z, Wei YB, Yang JR (2015) The role of miR-29b in cancer: regulation, function, and signaling. Onco Targets Ther 8:539–548.  https://doi.org/10.2147/OTT.S75899 PubMedPubMedCentralGoogle Scholar
  67. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59.  https://doi.org/10.1038/nrm2308 CrossRefPubMedGoogle Scholar
  68. Zhang X et al (2012) Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell 22:506–523.  https://doi.org/10.1016/j.ccr.2012.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhang P, Huang B, Xu X, Sessa WC (2013) Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochem Biophys Res Commun 437:368–373.  https://doi.org/10.1016/j.bbrc.2013.06.082 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhao JJ et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115:2630–2639.  https://doi.org/10.1182/blood-2009-09-243147 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD, Craig RW (2001) MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97:3902–3909CrossRefPubMedGoogle Scholar
  72. Zhu K et al (2016) MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell 7:434–444.  https://doi.org/10.1007/s13238-016-0277-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luciano Mazzoccoli
    • 1
  • Marcela Cristina Robaina
    • 1
  • Alexandre Gustavo Apa
    • 2
  • Martin Bonamino
    • 3
    • 4
  • Luciana Wernersbach Pinto
    • 5
  • Eduardo Queiroga
    • 6
  • Carlos E. Bacchi
    • 6
  • Claudete Esteves Klumb
    • 1
    • 7
    Email author
  1. 1.Programa de Pesquisa em Hemato-Oncologia MolecularInstituto Nacional de CâncerRio de JaneiroBrazil
  2. 2.Serviço de HematologiaInstituto Nacional de CâncerRio de JaneiroBrazil
  3. 3.Programa de Carcinogênese MolecularInstituto Nacional de CâncerRio de JaneiroBrazil
  4. 4.Fundação Instituto Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de ReferênciaRio de JaneiroBrazil
  5. 5.Divisão de PatologiaInstituto Nacional de CâncerRio de JaneiroBrazil
  6. 6.Laboratório Bacchi, Consultoria em PatologiaBotucatuBrazil
  7. 7.Laboratório de Hemato-Oncologia Celular e MolecularInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations