Transcriptional retargeting of herpes simplex virus for cell-specific replication to control cancer

  • Weihua Lou
  • Fang Ji
  • Jianing Fu
  • Zhiqiang Han
  • Wen Di
  • Ning Zhang
Review – Cancer Research



Oncolytic virotherapy has emerged as a novel frontier in the treatment of cancer. Among the viruses that entered clinical trials are the oncolytic herpes simplex virus-1 (HSV-1). Current oncolytic HSV-1 approved for clinical practice, and those in clinical trials are attenuated viruses, often deleted in the neurovirulence gene γ134.5, and in additional genes, which may result in a much more attenuated virus with reduced replication efficiency. Therefore, the transcriptional retargeting strategy by modifying the regulator elements flanking essential viral genes to achieve tumor-specific replication while maintaining as much of the viral genome has been representing alternative promising oncolytic virotherapy modality.

Materials and methods

In this communication, we aimed to review extensive studies on transcriptional retargeting strategy with HSV-1 genome engineered on immediate–early ICP4 gene, late γ134.5 gene or early ICP6 gene as well as multiple-regulated oncolytic HSV1 through combining transcriptional retargeting and translational control. Design modality based on differential cellular background, advantage, and potential clinic limitation of the innovative oncolytic HSV-1 was described, and prospective and challenge of transcriptional retargeting strategy were collectively summarized.


Transcriptional retargeting strategy holds great promise in retaining tumor specificity as well as full replication capacity of oncolytic virus in the target cell as urgently required by clinical trials. Future efforts should be aimed toward the development of multiple-component targeted oncolytic virus such as combing the transcriptional retargeting strategy and genetically attenuated modulation or post-transcriptional control that will be the most effective at generating truly tumor selective vectors.


Oncolytic virotherapy Herpes simplex virus-1 (HSV-1) Conditionally replicative Transcriptional control Tumor selective promoter 



We gratefully thank Dr. Robert S. Coffin (major researcher participating in construction of T-VEC and the management of T-VEC clinical trial) for his helpful review of the manuscript. This study was funded by the Natural Science Foundation of Science and Technology Commission of Shanghai Municipality (No. 16ZR1420000), China.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statements

This article does not contain any studies with human participations or animals performed by any of the authors.


  1. Armand-Labit V, Pradines A (2017) Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts 8(2):61–81CrossRefPubMedGoogle Scholar
  2. Bommareddy PK, Patel A, Hossain S, Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18(1):1–15CrossRefPubMedGoogle Scholar
  3. Campadelli-Fiume G, Petrovic B, Leoni V, Gianni T, Avitabile E, Casiraghi C, Gatta V (2016) Retargeting strategies for oncolytic herpes simplex viruses. Viruses 8(3):63CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chung RY, Saeki Y, Chiocca EA (1999) B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 73(9):7556–7564PubMedPubMedCentralGoogle Scholar
  5. Coffin R (2016) Interview with Robert Coffin, inventor of T-VEC: the first oncolytic immunotherapy approved for the treatment of cancer. Immunotherapy 8(2):103–106CrossRefPubMedGoogle Scholar
  6. de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJ et al (2016) Musashi1 impacts radio-resistance in glioblastoma by controlling DNA-protein kinase catalytic subunit. Am J Pathol 186(9):2271–2278CrossRefPubMedPubMedCentralGoogle Scholar
  7. Delwar ZM, Liu G, Kuo Y, Lee C, Bu L, Rennie PS, Jia WW (2016) Tumour-specific triple-regulated oncolytic herpes virus to target glioma. Oncotarget 7(19):28658–28669CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edfeldt K, Daskalakis K, Backlin C, Norlen O, Tiensuu Janson E, Westin G, Hellman P, Stalberg P (2017) DcR3, TFF3, and midkine are novel serum biomarkers in small intestinal neuroendocrine tumors. Neuroendocrinology 105(2):170–181CrossRefPubMedGoogle Scholar
  9. Fang L, Ward MG, Welsh PA, Budgeon LR, Neely EB, Howett MK (2003) Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection. Virology 314(1):147–160CrossRefPubMedGoogle Scholar
  10. Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107(10):1373–1379CrossRefPubMedPubMedCentralGoogle Scholar
  11. Glass M, Soling A, Messerle M (2008) Tumor-specific activity of cellular regulatory elements is down-regulated upon insertion into the herpes simplex virus genome. J Neurovirol 14(6):522–535CrossRefPubMedGoogle Scholar
  12. Gloss B, Bernard HU, Seedorf K, Klock G (1987) The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J 6(12):3735–3743PubMedPubMedCentralGoogle Scholar
  13. Goldstein DJ, Weller SK (1988) Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 62(1):196–205PubMedPubMedCentralGoogle Scholar
  14. Griffith C, Noonan S, Lou E, Shillitoe EJ (2007) An oncolytic mutant of herpes simplex virus type-1 in which replication is governed by a promoter/enhancer of human papillomavirus type-16. Cancer Gene Ther 14(12):985–993CrossRefPubMedGoogle Scholar
  15. He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day RS (1994) 3rd, James CD: CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res 54(22):5804–5807PubMedGoogle Scholar
  16. He P, Tang ZY, Liu BB, Ye SL, Liu YK (1999) The targeted expression of the human interleukin-2/interferon alpha2b fused gene in alpha-fetoprotein-expressing hepatocellular carcinoma cells. J Cancer Res Clin Oncol 125(2):77–82CrossRefPubMedGoogle Scholar
  17. Hernandez-Alcoceba R, Pihalja M, Nunez G, Clarke MF (2001) Evaluation of a new dual-specificity promoter for selective induction of apoptosis in breast cancer cells. Cancer Gene Ther 8(4):298–307CrossRefPubMedGoogle Scholar
  18. Ho IA, Ng WH, Lam PY (2010) FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors. Mol Cancer 9:270CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kambara H, Okano H, Chiocca EA, Saeki Y (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65(7):2832–2839CrossRefPubMedGoogle Scholar
  20. Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F, Taki M, Kyo S, Tanaka N, Fujiwara T (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10(1 Pt 1):285–292CrossRefPubMedGoogle Scholar
  21. Kufe D, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, Schlom J (1984) Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3(3):223–232CrossRefPubMedGoogle Scholar
  22. Kurihara T, Brough DE, Kovesdi I, Kufe DW (2000) Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Investig 106(6):763–771CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuroda T, Rabkin SD, Martuza RL (2006) Effective treatment of tumors with strong beta-catenin/T-cell factor activity by transcriptionally targeted oncolytic herpes simplex virus vector. Cancer Res 66(20):10127–10135CrossRefPubMedGoogle Scholar
  24. Lee CY, Rennie PS, Jia WW (2009) MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin Cancer Res 15(16):5126–5135CrossRefPubMedGoogle Scholar
  25. Lee CY, Bu LX, DeBenedetti A, Williams BJ, Rennie PS, Jia WW (2010) Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol Ther 18(5):929–935CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li Y, Liu D, Chen D, Kharbanda S, Kufe D (2003) Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22(38):6107–6110CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10(4):292–303CrossRefPubMedGoogle Scholar
  28. Longo SL, Griffith C, Glass A, Shillitoe EJ, Post DE (2011) Development of an oncolytic herpes simplex virus using a tumor-specific HIF-responsive promoter. Cancer Gene Ther 18(2):123–134CrossRefPubMedGoogle Scholar
  29. Maldonado AR, Klanke C, Jegga AG, Aronow BJ, Mahller YY, Cripe TP, Crombleholme TM (2010) Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. J Gene Med 12(7):613–623CrossRefPubMedGoogle Scholar
  30. Markert JM, Malick A, Coen DM, Martuza RL (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32(4):597–603CrossRefPubMedGoogle Scholar
  31. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252(5007):854–856CrossRefPubMedGoogle Scholar
  32. McCusker CT, Bacchetti S (1988) The responsiveness of human papillomavirus upstream regulatory regions to herpes simplex virus immediate early proteins. Virus Res 11(3):199–207CrossRefPubMedGoogle Scholar
  33. Meyers C, Andreansky SS, Courtney RJ (2003) Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue. Virology 315(1):43–55CrossRefPubMedGoogle Scholar
  34. Miao L, Fraefel C, Sia KC, Newman JP, Mohamed-Bashir SA, Ng WH, Lam PY (2014) The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy. Br J Cancer 110(1):94–106CrossRefPubMedGoogle Scholar
  35. Miettinen MM, Sarlomo-Rikala M, Kovatich AJ, Lasota J (1999) Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Modern Pathol 12(8):756–762Google Scholar
  36. Miller CS, Johnstone BM (2001) Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont 91(6):622–635CrossRefGoogle Scholar
  37. Mineta T, Rabkin SD, Martuza RL (1994) Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 54(15):3963–3966PubMedGoogle Scholar
  38. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943CrossRefPubMedGoogle Scholar
  39. Miyatake S, Iyer A, Martuza RL, Rabkin SD (1997) Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol 71(7):5124–5132PubMedPubMedCentralGoogle Scholar
  40. Miyatake SI, Tani S, Feigenbaum F, Sundaresan P, Toda H, Narumi O, Kikuchi H, Hashimoto N, Hangai M, Martuza RL et al (1999) Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Ther 6(4):564–572CrossRefPubMedGoogle Scholar
  41. Mullen JT, Kasuya H, Yoon SS, Carroll NM, Pawlik TM, Chandrasekhar S, Nakamura H, Donahue JM, Tanabe KK (2002) Regulation of herpes simplex virus 1 replication using tumor-associated promoters. Ann Surg 236(4):502–512 (discussion 512–503)CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nakamura H, Kasuya H, Mullen JT, Yoon SS, Pawlik TM, Chandrasekhar S, Donahue JM, Chiocca EA, Chung RY, Tanabe KK (2002) Regulation of herpes simplex virus gamma(1)34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Investig 109(7):871–882CrossRefPubMedPubMedCentralGoogle Scholar
  43. Onisim A, Achimas-Cadariu A, Vlad C, Kubelac P, Achimas-Cadariu P (2015) Current insights into the association of Nestin with tumor angiogenesis. J BUON 20(3):699–706PubMedGoogle Scholar
  44. Peters C, Rabkin SD (2014) Designing herpes viruses as oncolytics. Mol Ther Oncolyt 2:15010CrossRefGoogle Scholar
  45. Pin RH, Reinblatt M, Fong Y (2004) Utilizing alpha-fetoprotein expression to enhance oncolytic viral therapy in hepatocellular carcinoma. Ann Surg 240(4):659–665 (discussion 665–656)PubMedPubMedCentralGoogle Scholar
  46. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851PubMedGoogle Scholar
  47. Shillitoe EJ, Noonan S (2000) Strength and specificity of different gene promoters in oral cancer cells. Oral Oncol 36(2):214–220CrossRefPubMedGoogle Scholar
  48. Shishov AS, Virych IE, Rudometov Iu P, Kupriianova LV (2003) [Documented case of recurrent herpes zoster]. Klinicheskaia meditsina 81(10):63–64PubMedGoogle Scholar
  49. Sia KC, Huynh H, Chung AY, Ooi LL, Lim KH, Hui KM, Lam PY (2013) Preclinical evaluation of transcriptional targeting strategy for human hepatocellular carcinoma in an orthotopic xenograft mouse model. Mol Cancer Therapeut 12(8):1651–1664CrossRefGoogle Scholar
  50. Smith KD, Mezhir JJ, Bickenbach K, Veerapong J, Charron J, Posner MC, Roizman B, Weichselbaum RR (2006) Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. J Virol 80(3):1110–1120CrossRefPubMedPubMedCentralGoogle Scholar
  51. Todo T, Martuza RL, Rabkin SD, Johnson PA (2001) Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 98(11):6396–6401CrossRefGoogle Scholar
  52. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56(1):150–153PubMedGoogle Scholar
  53. Yamamura H, Yoshikawa H, Tatsuta M, Akedo H, Takahashi K (1998) Expression of the smooth muscle calponin gene in human osteosarcoma and its possible association with prognosis. Int J Cancer 79(3):245–250CrossRefPubMedGoogle Scholar
  54. Yamamura H, Hashio M, Noguchi M, Sugenoya Y, Osakada M, Hirano N, Sasaki Y, Yoden T, Awata N, Araki N et al (2001) Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors. Cancer Res 61(10):3969–3977PubMedGoogle Scholar
  55. Ylosmaki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K (2008) Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA. J Virol 82(22):11009–11015CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yoon SS, Nakamura H, Carroll NM, Bode BP, Chiocca EA, Tanabe KK (2000) An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 14(2):301–311PubMedGoogle Scholar
  57. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes development 13(18):2388–2399CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang W, Ge K, Zhao Q, Zhuang X, Deng Z, Liu L, Li J, Zhang Y, Dong Y, Zhang S et al (2015) A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 6(24):20345–20355CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zinkernagel AS, Johnson RS, Nizet V (2007) Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl) 85(12):1339–1346CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynecology, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Gynecologic OncologyShanghaiChina
  3. 3.Columbia Center for Translational ImmunologyColumbia University Medical CenterNew YorkUSA
  4. 4.Viri Biotechnology Company LimitedZhengzhouChina

Personalised recommendations