Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 143, Issue 11, pp 2159–2170 | Cite as

Efficient targeting of CD13 on cancer cells by the immunotoxin scFv13–ETA′ and the bispecific scFv [13xds16]

  • Elena Grieger
  • Gerrit Gresch
  • Judith Niesen
  • Mira Woitok
  • Stefan Barth
  • Rainer Fischer
  • Rolf Fendel
  • Christoph Stein
Original Article – Cancer Research

Abstract

Purpose

Treatment of cancer using standard chemotherapy still offers a poor prognosis combined with severe side effects. Novel antibody-based therapies have been shown to overcome low efficiency and lack of selectivity by targeting cancer-associated antigens, such as aminopeptidase CD13.

Methods

We isolated a high-affinity CD13-specific single-chain fragment variable (scFv13) from a phage display library of V-genes from mice immunized with soluble antigen. An immunotoxin comprising the scFv13 and a truncated version of the exotoxin A of Pseudomonas aeruginosa (ETA′, scFv13–ETA′) and a bispecific scFv targeting CD13 and CD16 simultaneously (bsscFv[13xds16]) was generated and investigated for their therapeutic potential.

Results

Both fusion proteins bound specifically to target cells with high affinity. Furthermore, scFv13–ETA′ inhibited the proliferation of human cancer cell lines efficiently at low concentrations (IC50 values of 408 pM–7 nM) and induced apoptosis (40–85% of target cells). The bsscFv triggered dose-dependent antibody-dependent cell-mediated cytotoxicity, resulting in the lysis of up to 23.9% A2058 cells, 18.0% MDA-MB-468 cells and 19.1% HL-60 cells.

Conclusion

The provided data demonstrate potent therapeutic activity of the scFv13–ETA′ and the bsscFv[13xds16]. The CD13-specific scFv is therefore suitable for the direct and specific delivery of both cytotoxic agents and effector cells to cancer-derived cells, making it ideal for further therapeutic evaluation.

Keywords

CD13 Single-chain variable fragment Antibody derivative Immunotoxin Bispecific scFv 

Notes

Acknowledgements

We thank Reinhard Rosinke, Severin Schmies, Kai Fuhrmann, Anh-Tuan Pham and Nicole Kündgen-Redding (Fraunhofer IME, Aachen) for technical support and Dr. Richard M Twyman for critically reading the manuscript. The plasmids pAK100 and pAK400 were kindly provided through a material transfer agreement (Krebber et al. 1997). Mira Woitok was supported by the RWTH Aachen University scholarship of Young Researchers at RWTH Aachen University (RFwN). BHK-21 and CD16+ BHK-21 cells were kindly provided by Dr. Christian Kellner (Christian-Albrechts-University Kiel). This work was funded by the Fraunhofer MAVO-project MultiNaBeL.

Compliance with ethical standards

Funding

Mira Woitok was supported by the RWTH Aachen University scholarship of Young Researchers at RWTH Aachen University (RFwN).

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

In accordance with the Helsinki Declaration of 1964 and its later amendments, primary blood samples were obtained during routine clinical practice at the University Hospital Aachen after receiving informed consent and with the approval of the Clinical Research Ethics Board of the University of Aachen. The experimental use of mice was approved by the responsible local authorities and all European guidelines for the protection of laboratory animals were followed.

Supplementary material

432_2017_2468_MOESM1_ESM.pdf (104 kb)
Supplementary material 1 (PDF 104 kb)
432_2017_2468_MOESM2_ESM.pdf (7 kb)
Supplementary material 2 (PDF 7 kb)
432_2017_2468_MOESM3_ESM.pdf (29 kb)
Supplementary material 3 (PDF 29 kb)

References

  1. Alewine C, Hassan R, Pastan I (2015) Advances in anticancer immunotoxin therapy. Oncologist 20:176–185. doi: 10.1634/theoncologist.2014-0358 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antignani A, Fitzgerald D (2013) Immunotoxins: the role of the toxin. Toxins 5:1486–1502. doi: 10.3390/toxins5081486 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asano R, Hagiwara Y, Koyama N, Masakari Y, Orimo R, Arai K, Ogata H, Furumoto S, Umetsu M, Kumagai I (2013) Multimerization of anti-(epidermal growth factor receptor) IgG fragments induces an antitumor effect: the case for humanized 528 scFv multimers. FEBS J 280:4816–4826. doi: 10.1111/febs.12451 CrossRefPubMedGoogle Scholar
  4. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, Einsele H, Brandl C, Wolf A, Kirchinger P, Klappers P, Schmidt M, Riethmuller G, Reinhardt C, Baeuerle PA, Kufer P (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science (New York, NY) 321:974–977. doi: 10.1126/science.1158545 CrossRefGoogle Scholar
  5. Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66:1572–1579CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26:88–130. doi: 10.1002/med.20044 CrossRefPubMedGoogle Scholar
  7. Benedict CA, MacKrell AJ, Anderson WF (1997) Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods 201:223–231CrossRefPubMedGoogle Scholar
  8. Bruenke J, Fischer B, Barbin K, Schreiter K, Wachter Y, Mahr K, Titgemeyer F, Niederweis M, Peipp M, Zunino SJ, Repp R, Valerius T, Fey GH (2004) A recombinant bispecific single-chain Fv antibody against HLA class II and FcgammaRIII (CD16) triggers effective lysis of lymphoma cells. Br J Haematol 125:167–179. doi: 10.1111/j.1365-2141.2004.04893.x CrossRefPubMedGoogle Scholar
  9. Bruenke J, Barbin K, Kunert S, Lang P, Pfeiffer M, Stieglmaier K, Niethammer D, Stockmeyer B, Peipp M, Repp R, Valerius T, Fey GH (2005) Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcgammaRIII (CD16). Br J Haematol 130:218–228. doi: 10.1111/j.1365-2141.2005.05414.x CrossRefPubMedGoogle Scholar
  10. Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D (2004) NK cells: innate immunity against hematological malignancies? Trends Immunol 25:328–333. doi: 10.1016/j.it.2004.04.005 CrossRefPubMedGoogle Scholar
  11. Cremer C, Braun H, Mladenov R, Schenke L, Cong X, Jost E, Brummendorf TH, Fischer R, Carloni P, Barth S, Nachreiner T (2015) Novel angiogenin mutants with increased cytotoxicity enhance the depletion of pro-inflammatory macrophages and leukemia cells ex vivo. Cancer Immunol Immunother 64:1575–1586. doi: 10.1007/s00262-015-1763-8 CrossRefPubMedGoogle Scholar
  12. Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234. doi: 10.1146/annurev.immunol.15.1.203 CrossRefPubMedGoogle Scholar
  13. Dondossola E, Rangel R, Guzman-Rojas L, Barbu EM, Hosoya H, St John LS, Molldrem JJ, Corti A, Sidman RL, Arap W, Pasqualini R (2013) CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci USA 110:20717–20722. doi: 10.1073/pnas.1321139110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9CrossRefPubMedPubMedCentralGoogle Scholar
  15. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, Barnard GF, Doki Y, Mori M (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120:3326–3339. doi: 10.1172/jci42550 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hollevoet K, Mason-Osann E, Muller F, Pastan I (2015) Methylation-associated partial down-regulation of mesothelin causes resistance to anti-mesothelin immunotoxins in a pancreatic cancer cell line. PLoS ONE 10:e0122462. doi: 10.1371/journal.pone.0122462 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hristodorov D, Mladenov R, Pardo A, Pham AT, Huhn M, Fischer R, Thepen T, Barth S (2013) Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer 109:1570–1578. doi: 10.1038/bjc.2013.457 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kellner C, Bruenke J, Stieglmaier J, Schwemmlein M, Schwenkert M, Singer H, Mentz K, Peipp M, Lang P, Oduncu F, Stockmeyer B, Fey GH (2008) A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother (Hagerstown, Md: 1997) 31:871–884. doi: 10.1097/CJI.0b013e318186c8b4 CrossRefGoogle Scholar
  19. Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Pluckthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201:35–55CrossRefPubMedGoogle Scholar
  20. Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8:E532–E551. doi: 10.1208/aapsj080363 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mina-Osorio P (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med 14:361–371. doi: 10.1016/j.molmed.2008.06.003 CrossRefPubMedGoogle Scholar
  22. Mladenov R, Hristodorov D, Cremer C, Hein L, Kreutzer F, Stroisch T, Niesen J, Brehm H, Blume T, Brummendorf TH, Jost E, Thepen T, Fischer R, Stockmeyer B, Barth S, Stein C (2015) The Fc-alpha receptor is a new target antigen for immunotherapy of myeloid leukemia. Int J Cancer 137:2729–2738. doi: 10.1002/ijc.29628 CrossRefPubMedGoogle Scholar
  23. Monnier PP, Vigoroux RJ, Tassew NG (2013) In vivo applications of single chain Fv (variable domain) (scFv) fragments. Antibodies 2:193–208. doi: 10.3390/antib2020193 CrossRefGoogle Scholar
  24. Niesen J, Stein C, Brehm H, Hehmann-Titt G, Fendel R, Melmer G, Fischer R, Barth S (2015) Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities. J Cancer Res Clin Oncol 141:2079–2095. doi: 10.1007/s00432-015-1975-5 CrossRefPubMedGoogle Scholar
  25. Niesen J, Hehmann-Titt G, Woitok M, Fendel R, Barth S, Fischer R, Stein C (2016) A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett 374:229–240. doi: 10.1016/j.canlet.2016.02.020 CrossRefPubMedGoogle Scholar
  26. Nohara S, Kato K, Fujiwara D, Sakuragi N, Yanagihara K, Iwanuma Y, Kajiyama Y (2016) Aminopeptidase N (APN/CD13) as a target molecule for scirrhous gastric cancer. Clin Res Hepatol Gastroenterol 40:494–503. doi: 10.1016/j.clinre.2015.11.003 CrossRefPubMedGoogle Scholar
  27. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Can Res 60:722–727Google Scholar
  28. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237. doi: 10.1146/annurev.med.58.070605.115320 CrossRefPubMedGoogle Scholar
  29. Piedfer M, Dauzonne D, Tang R, N’Guyen J, Billard C, Bauvois B (2011) Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells. FASEB J 25:2831–2842. doi: 10.1096/fj.11-181396 CrossRefPubMedGoogle Scholar
  30. Qiu Y, Lv W, Xu M, Xu Y (2016) Single chain antibody fragments with pH dependent binding to FcRn enabled prolonged circulation of therapeutic peptide in vivo. J Control Release 229:37–47. doi: 10.1016/j.jconrel.2016.03.017 CrossRefPubMedGoogle Scholar
  31. Raghavan M, Chen MY, Gastinel LN, Bjorkman PJ (1994) Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1:303–315CrossRefPubMedGoogle Scholar
  32. Schiffer S, Hansen HP, Hehmann-Titt G, Huhn M, Fischer R, Barth S, Thepen T (2013) Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J 3:e106. doi: 10.1038/bcj.2013.4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schubert I, Kellner C, Stein C, Kugler M, Schwenkert M, Saul D, Stockmeyer B, Berens C, Oduncu FS, Mackensen A, Fey GH (2012) A recombinant triplebody with specificity for CD19 and HLA-DR mediates preferential binding to antigen double-positive cells by dual-targeting. MAbs 4:45–56. doi: 10.4161/mabs.4.1.18498 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schubert I, Saul D, Nowecki S, Mackensen A, Fey GH, Oduncu FS (2014) A dual-targeting triplebody mediates preferential redirected lysis of antigen double-positive over single-positive leukemic cells. MAbs 6:286–296. doi: 10.4161/mabs.26768 CrossRefPubMedGoogle Scholar
  35. Schwenkert M, Birkholz K, Schwemmlein M, Kellner C, Kugler M, Peipp M, Nettelbeck DM, Schuler-Thurner B, Schaft N, Dorrie J, Ferrone S, Kampgen E, Fey GH (2008) A single chain immunotoxin, targeting the melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells. Melanoma Res 18:73–84. doi: 10.1097/CMR.0b013e3282f7c8f9 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287. doi: 10.1038/nrc3236 CrossRefPubMedGoogle Scholar
  37. Sheng W, Shang Y, Li L, Zhen Y (2014) An EGFR/CD13 bispecific fusion protein and its enediyne-energized analog show potent antitumor activity. Anticancer Drugs 25:82–91. doi: 10.1097/cad.0000000000000029 CrossRefPubMedGoogle Scholar
  38. Singer H, Kellner C, Lanig H, Aigner M, Stockmeyer B, Oduncu F, Schwemmlein M, Stein C, Mentz K, Mackensen A, Fey GH (2010) Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16. J Immunother (Hagerstown, Md: 1997) 33:599–608. doi: 10.1097/CJI.0b013e3181dda225 CrossRefGoogle Scholar
  39. Singh R, Samant U, Hyland S, Chaudhari PR, Wels WS, Bandyopadhyay D (2007) Target-specific cytotoxic activity of recombinant immunotoxin scFv(MUC1)–ETA on breast carcinoma cells and primary breast tumors. Mol Cancer Ther 6:562–569. doi: 10.1158/1535-7163.mct-06-0604 CrossRefPubMedGoogle Scholar
  40. Stein C, Kellner C, Kugler M, Reiff N, Mentz K, Schwenkert M, Stockmeyer B, Mackensen A, Fey GH (2010) Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol 148:879–889. doi: 10.1111/j.1365-2141.2009.08033.x CrossRefPubMedGoogle Scholar
  41. Stewart BW, Wild CP (2014) World Cancer Report 2014. International Agency for Research on Cancer, LyonGoogle Scholar
  42. Thorpe SJ, Turner C, Heath A, Feavers I, Vatn I, Natvig JB, Thompson KM (2003) Clonal analysis of a human antimouse antibody (HAMA) response. Scand J Immunol 57:85–92CrossRefPubMedGoogle Scholar
  43. Tur MK, Huhn M, Thepen T, Stocker M, Krohn R, Vogel S, Jost E, Osieka R, van de Winkel JG, Fischer R, Finnern R, Barth S (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Can Res 63:8414–8419Google Scholar
  44. Tur MK, Huhn M, Jost E, Thepen T, Brummendorf TH, Barth S (2011) In vivo efficacy of the recombinant anti-CD64 immunotoxin H22(scFv)–ETA′ in a human acute myeloid leukemia xenograft tumor model. Int J Cancer 129:1277–1282. doi: 10.1002/ijc.25766 CrossRefPubMedGoogle Scholar
  45. Wang WW, Das D, Tang XL, Budzynski W, Suresh MR (2005) Antigen targeting to dendritic cells with bispecific antibodies. J Immunol Methods 306:80–92. doi: 10.1016/j.jim.2005.07.023 CrossRefPubMedGoogle Scholar
  46. Weidle UH, Tiefenthaler G, Schiller C, Weiss EH, Georges G, Brinkmann U (2014) Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics 11:25–38PubMedGoogle Scholar
  47. Wels W, Moritz D, Schmidt M, Jeschke M, Hynes NE, Groner B (1995) Biotechnological and gene therapeutic strategies in cancer treatment. Gene 159:73–80CrossRefPubMedGoogle Scholar
  48. Wickstrom M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102:501–508. doi: 10.1111/j.1349-7006.2010.01826.x CrossRefPubMedGoogle Scholar
  49. Yang F, Wen W, Qin W (2016) Bispecific antibodies as a development platform for new concepts and treatment strategies. Int J Mol Sci. doi: 10.3390/ijms18010048 Google Scholar
  50. Zhang Q, Wang J, Zhang H, Zhao D, Zhang Z, Zhang S (2015) Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J Cancer Res Ther 11:223–228. doi: 10.4103/0973-1482.138007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of ImmunotherapyFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  2. 2.Institute for Applied Medical EngineeringUniversity Hospital RWTH AachenAachenGermany
  3. 3.Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations