Journal of Cancer Research and Clinical Oncology

, Volume 143, Issue 2, pp 275–291 | Cite as

β-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives

  • Marisa Coelho
  • Cátia Soares-Silva
  • Daniela Brandão
  • Franca Marino
  • Marco Cosentino
  • Laura Ribeiro
Review – Clinical Oncology



In this review, we aimed to present and discuss the available preclinical and epidemiological evidences regarding the modulation of cancer cell proliferation by β-adrenoceptors (β-AR), with a specific focus on the putative effects of β-blockers according to their pharmacological properties.


A comprehensive review of the published literature was conducted, and the evidences concerning the involvement of β-AR in cancer as well as the possible role of β-blockers were selected and discussed.


The majority of reviewed studies show that: (1) All the cancer types express both β1- and β2-AR, with the exception of neuroblastoma only seeming to express β2-AR; (2) adrenergic agonists are able to increase proliferation of several types of cancers; (3) the proliferative effect seems to be mediated by both β1- and β2-AR; (4) binding to β-AR results in a cAMP transient flux which activates two major downstream effector systems: protein kinase A and EPAC and (5) β-blockers might be putative adjuvants for cancer treatment.


Overall, the reviewed studies show strong evidences that β-AR activation, through several intracellular mechanisms, modulate tumor cell proliferation suggesting β-blockers can be a feasible therapeutic approach to antagonize β-adrenergic response or have a protective effect per se. This review highlight the need for intensifying the research not only on the molecular mechanisms underlying the β-adrenergic influence in cancer, but also on the implications of biased agonism of β-blockers as potential antitumor agents.


Adrenergic system Catecholamines Cancer Proliferation β-Blockers 



































Matrix metalloproteinase


Vascular endothelial growth factor


Protein kinase A


Cyclic adenosine monophosphate


Extracellular signal-regulated kinase


Nuclear factor κB


Activator protein 1


CAMP response element binding protein


Arachidonic acid


G-protein-coupled receptor


Epidermal growth factor


Compliance with ethical standards

Conflict of interest

Author Marisa Coelho declares that she has no conflict of interest. Author Cátia Soares-Silva declares that she has no conflict of interest. Author Daniela Brandão declares that she has no conflict of interest. Author Franca Marino declares that she has no conflict of interest. Author Marco Cosentino declares that he has no conflict of interest. Author Laura Ribeiro declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Al-Wadei HA, Al-Wadei MH, Schuller HM (2012a) Cooperative regulation of non-small cell lung carcinoma by nicotinic and β-adrenergic receptors: a novel target for intervention PloS One 7:e29915. doi: 10.1371/journal.pone.0029915 PubMedGoogle Scholar
  2. Al-Wadei HA, Ullah MF, Al-Wadei MH (2012b) Intercepting neoplastic progression in lung malignancies via the β adrenergic (β-AR) pathway: implications for anti-cancer drug targets. Pharmacol Res 66:33–40. doi: 10.1016/j.phrs.2012.03.014 CrossRefPubMedGoogle Scholar
  3. Armaiz-Pena GN, Lutgendorf SK, Cole SW, Sood AK (2009) Neuroendocrine modulation of cancer progression. Brain Behav Immun 23:10–15. doi: 10.1016/j.bbi.2008.06.007 CrossRefPubMedGoogle Scholar
  4. Armaiz-Pena GN et al (2015) Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget 6:4266–4273. doi: 10.18632/oncotarget.2887 CrossRefPubMedGoogle Scholar
  5. Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Pineyro G (2003) Β-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 100:11406–11411. doi: 10.1073/pnas.1936664100 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baker JG, Hall IP, Hill SJ (2003) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol 64:679–688. doi: 10.1124/mol.64.3.679 CrossRefPubMedGoogle Scholar
  7. Baker JG, Hill SJ, Summers RJ (2011) Evolution of β-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol Sci 32:227–234. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Β blockers and breast cancer mortality: a population- based study. J Clin Oncol 29:2635–2644. doi: 10.1200/jco.2010.33.5422 CrossRefPubMedGoogle Scholar
  9. Bernabé DG, Tamae AC, Biasoli ER, Oliveira SH (2011) Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain Behav Immun 25:574–583CrossRefPubMedGoogle Scholar
  10. Bravo-Calderon DM, Oliveira DT, Marana AN, Nonogaki S, Carvalho AL, Kowalski LP (2011) Prognostic significance of β-2 adrenergic receptor in oral squamous cell carcinoma. Cancer Biomark 10:51–59. doi: 10.3233/cbm-2012-0228 CrossRefPubMedGoogle Scholar
  11. Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM (2002) Β-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol 21:153–157PubMedGoogle Scholar
  12. Calvani M et al (2015) Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression. Oncotarget 6:4615–4632. doi: 10.18632/oncotarget.2652 CrossRefPubMedGoogle Scholar
  13. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730. doi: 10.1158/0008-5472.can-08-4289 CrossRefPubMedGoogle Scholar
  14. Chida Y, Hamer M, Wardle J, Steptoe A (2008) Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 5:466–475. doi: 10.1038/ncponc1134 CrossRefPubMedGoogle Scholar
  15. Childers WK, Hollenbeak CS, Cheriyath P (2015) β-Blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer 15:426–431. doi: 10.1016/j.clbc.2015.07.001 CrossRefPubMedGoogle Scholar
  16. Choi CH et al (2014) Meta-analysis of the effects of β blocker on survival time in cancer patients. J Cancer Res Clin Oncol 140:1179–1188. doi: 10.1007/s00432-014-1658-7 CrossRefPubMedGoogle Scholar
  17. Coelho M, Moz M, Correia G, Teixeira A, Medeiros R, Ribeiro L (2015) Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol Rep 33:2513–2520. doi: 10.3892/or.2015.3874 PubMedGoogle Scholar
  18. Cole SW, Sood AK (2012) Molecular pathways: β-adrenergic signaling in cancer. Cancer Res 18:1201–1206. doi: 10.1158/1078-0432.ccr-11-0641 Google Scholar
  19. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK (2015) Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 15:563–572. doi: 10.1038/nrc3978 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Colucci R, Moretti S (2016) The role of stress and β-adrenergic system in melanoma: current knowledge and possible therapeutic options. J Cancer Res Clin Oncol 142:1021–1029. doi: 10.1007/s00432-015-2078-z CrossRefPubMedGoogle Scholar
  21. Cosentino M et al (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68:283–295CrossRefPubMedGoogle Scholar
  22. Cosentino M, Marino F, Maestroni GJ (2015) Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives. Front Cell Neurosci 9:302. doi: 10.3389/fncel.2015.00302 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dal Monte M, Fornaciari I, Nicchia GP, Svelto M, Casini G, Bagnoli P (2014) β3-adrenergic receptor activity modulates melanoma cell proliferation and survival through nitric oxide signaling. Naunyn Schmiedebergs Arch Pharmaco 387:533–543. doi: 10.1007/s00210-014-0969-1 CrossRefGoogle Scholar
  24. Diaz ES, Karlan BY, Li AJ (2012) Impact of β blockers on epithelial ovarian cancer survival. Gynecol Oncol 127:375–378. doi: 10.1016/j.ygyno.2012.07.102 CrossRefPubMedGoogle Scholar
  25. Eng JW, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA (2014) A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 63:1115–1128. doi: 10.1007/s00262-014-1617-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ (2010) Ligand-directed signalling at β-adrenoceptors. Br J Pharmacol 159:1022–1038. doi: 10.1111/j.1476-5381.2009.00602.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. doi: 10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  28. Flierl MA et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725. doi: 10.1038/nature06185 CrossRefPubMedGoogle Scholar
  29. Frishman WH, Saunders E (2011) β-Adrenergic blockers. J Clin Hypertens (Greenwich) 13:649–653. doi: 10.1111/j.1751-7176.2011.00515.x CrossRefGoogle Scholar
  30. Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584. doi: 10.1124/mol.106.026716 CrossRefPubMedGoogle Scholar
  31. Gargiulo L et al (2014) Differential β2-adrenergic receptor expression defines the phenotype of non-tumorigenic and malignant human breast cell lines. Oncotarget 5:10058–10069. doi: 10.18632/oncotarget.2460 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goldstein DS (2003) Catecholamines and stress. Endocr Regul 37:69–80PubMedGoogle Scholar
  33. Grazia Perrone M, Scilimati A (2010) β(3)-Adrenoceptor agonists and (antagonists as) inverse agonists history, perspective, constitutive activity, and stereospecific binding. Methods Enzymol 484:197–230. doi: 10.1016/b978-0-12-381298-8.00011-3 CrossRefPubMedGoogle Scholar
  34. Grytli HH, Fagerland MW, Fossa SD, Tasken KA (2014) Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65:635–641. doi: 10.1016/j.eururo.2013.01.007 CrossRefPubMedGoogle Scholar
  35. Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356. doi: 10.3892/or_00001032 PubMedGoogle Scholar
  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  37. Heitz F et al (2013) Impact of β blocker medication in patients with platinum sensitive recurrent ovarian cancer-a combined analysis of 2 prospective multicenter trials by the AGO study group NCIC-CTG and EORTC-GCG. Gynecol Oncol 129:463–466. doi: 10.1016/j.ygyno.2013.03.007 CrossRefPubMedGoogle Scholar
  38. Hoffmann D, Rivenson A, Chung FL, Hecht SS (1991) Nicotine-derived N-nitrosamines (TSNA) and their relevance in tobacco carcinogenesis. Crit Rev Toxicol 21:305–311. doi: 10.3109/10408449109017917 CrossRefPubMedGoogle Scholar
  39. Inbar S, Neeman E, Avraham R, Benish M, Rosenne E, Ben-Eliyahu S (2011) Do stress responses promote leukemia progression? an animal study suggesting a role for epinephrine and prostaglandin-E(2) through reduced NK activity. PLoS One. doi: 10.1371/journal.pone.0019246 Google Scholar
  40. Ji Y, Chen S, Xiao X, Zheng S, Li K (2012) β-blockers: a novel class of antitumor agents. Onco Targets Ther 5:391–401. doi: 10.2147/ott.s38403 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Johannesdottir SA, Schmidt M, Phillips G, Glaser R, Yang EV, Blumenfeld M, Lemeshow S (2013a) Use of β-blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. BMC Cancer 13:85. doi: 10.1186/1471-2407-13-85 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Johannesdottir SA, Schmidt M, Phillips G, Glaser R, Yang EV, Blumenfeld M, Lemeshow S (2013b) Use of ss-blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. BMC Cancer 13:85. doi: 10.1186/1471-2407-13-85 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lamkin DM et al (2016) β-Adrenergic-stimulated macrophages: comprehensive localization in the M1-M2 spectrum. Brain Behav Immun 57:338–346. doi: 10.1016/j.bbi.2016.07.162 CrossRefPubMedGoogle Scholar
  44. Le CP et al (2016) Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nature Commun 7:10634. doi: 10.1038/ncomms10634 CrossRefGoogle Scholar
  45. Lemeshow S et al (2011) β-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 20:2273–2279. doi: 10.1158/1055-9965.epi-11-0249 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liao X, Che X, Zhao W, Zhang D, Bi T, Wang G (2010) The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling. Oncol Rep 24:1669–1676. doi: 10.3892/or_00001032 PubMedGoogle Scholar
  47. Lin X, Luo K, Lv Z, Huang J (2012) β-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology 59:584–588PubMedGoogle Scholar
  48. Lin Q, Wang F, Yang R, Zheng X, Gao H, Zhang P (2013) Effect of chronic restraint stress on human colorectal carcinoma growth in mice. PLoS One 8:e61435. doi: 10.1371/journal.pone.0061435 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liu X, Wu WK, Yu L, Li ZJ, Sung JJ, Zhang ST, Cho CH (2008) Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of β-adrenoceptors. J Pharmacol Exp Ther 326:69–75. doi: 10.1124/jpet.107.134528 CrossRefPubMedGoogle Scholar
  50. López-Sendón J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, Tendera M, Waagstein F, Kjekshus J, Lechat P, Torp-Pedersen C (2004) Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The task force on ACE-inhibitors of the European Society of Cardiology. Eur Heart J 25:1454–1470. doi: 10.1016/j.ehj.2004.06.003
  51. Lutgendorf SK et al (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Cancer Res 9:4514–4521Google Scholar
  52. Lutgendorf SK, Sood AK, Antoni MH (2010) Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol 28:4094–4099. doi: 10.1200/jco.2009.26.9357 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luthy IA, Bruzzone A, Pinero CP, Castillo LF, Chiesa IJ, Vazquez SM, Sarappa MG (2009) Adrenoceptors: non conventional target for breast cancer? Curr Med Chem 16:1850–1862. doi: 10.2174/092986709788186048 CrossRefPubMedGoogle Scholar
  54. Luttrell LM, Maudsley S, Bohn LM (2015) Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol Pharmacol 88:579–588. doi: 10.1124/mol.115.099630 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Madden KS, Szpunar MJ, Brown EB (2011) β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Res Treat 130:747–758. doi: 10.1007/s10549-011-1348-y CrossRefPubMedPubMedCentralGoogle Scholar
  56. Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71. doi: 10.1007/s00726-011-1186-6 CrossRefPubMedGoogle Scholar
  57. McCarty MF (2014) A role for cAMP-driven transactivation of EGFR in cancer aggressiveness—therapeutic implications. Med Hypotheses 83:142–147. doi: 10.1016/j.mehy.2014.05.009 CrossRefPubMedGoogle Scholar
  58. Monami M et al (2013) Further data on β-blockers and cancer risk: observational study and meta-analysis of randomized clinical trials. Curr Med Res Opin 29:369–378. doi: 10.1185/03007995.2013.772505 CrossRefPubMedGoogle Scholar
  59. Moreno-Smith M (2010) Impact of stress on cancer metastasis. Future Oncol 6:1863–1881. doi: 10.2217/fon.10.142 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moretti S et al (2013) β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest 93:279–290. doi: 10.1038/labinvest.2012.175 CrossRefPubMedGoogle Scholar
  61. Nagaraja AS, Sadaoui NC, Lutgendorf SK, Ramondetta LM, Sood AK (2013) β-blockers: a new role in cancer chemotherapy? Expert Opin Investig Drugs 22:1359–1363. doi: 10.1517/13543784.2013.825250 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nguyen KD (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108. doi: 10.1038/nature10653 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Penn RB, Frielle T, McCullough JR, Aberg G, Benovic JL (1996) Comparison of R-, S-, and RS-albuterol interaction with human β 1- and β 2-adrenergic receptors. Clin Rev Allergy Immunol 14:37–45. doi: 10.1007/bf02772201 CrossRefPubMedGoogle Scholar
  64. Perez D, Hébert T, Cotecchia S, Doze VA, Graham RM, Bylund DB, Altosaar K, Devost D, Gora S, Goupil E, Kan S, Machkalyan G, Michel MC, Sleno R, Summers R, Zylbergold P, Balaji P, Bond RA, Eikenburg DC, Hieble JP, Minneman KP, Sergio P, Hills R (2016) Adrenoceptors, introduction. Last modified on 10/08/2015. IUPHAR/BPS Guide Pharmacol. Accessed 30 May 2016
  65. Pérez Piñero C, Bruzzone A, Sarappa MG, Castillo LF, Lüthy IA (2012) Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol 166:721–736. doi: 10.1111/j.1476-5381.2011.01791.x CrossRefPubMedPubMedCentralGoogle Scholar
  66. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Diz PG, Gandara Rey JM, Garcia-Garcia A (2010) β-adrenergic receptors in cancer: therapeutic implications. Oncol Res 19:45–54. doi: 10.3727/096504010X12828372551867 CrossRefPubMedGoogle Scholar
  67. Pimentel MA, Chai MG, Le CP, Cole SW, Sloan EK (2012) Sympathetic nervous system regulation of metastasis. In: Rahul Jandial and Kent Hunter (eds) Metastatic cancer: integrated organ system and biological approach, pp 1–11Google Scholar
  68. Poirier L, Tobe SW (2014) Contemporary use of β-blockers: clinical relevance of subclassification. Can J Cardiol 30:S9–S15. doi: 10.1016/j.cjca.2013.12.001 CrossRefPubMedGoogle Scholar
  69. Powe DG, Voss MJ, Zanker KS, Habashy HO, Green AR, Ellis IO, Entschladen F (2010) β-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1:628–638. doi: 10.18632/oncotarget.101009 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386. doi: 10.1038/nrd3024 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ramberg H et al (2008) Hormonal regulation of β2-adrenergic receptor level in prostate cancer. Prostate 68:1133–1142. doi: 10.1002/pros.20778 CrossRefPubMedGoogle Scholar
  72. Rangarajan S, Enserink JM, Kuiperij HB, de Rooij J, Price LS, Schwede F, Bos JL (2003) Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the β 2-adrenergic receptor. J Cell Biol 160:487–493. doi: 10.1083/jcb.200209105 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol. doi: 10.3389/fphar.2015.00171 PubMedPubMedCentralGoogle Scholar
  74. Schuller HM (2010) β-adrenergic signaling, a novel target for cancer therapy? Oncotarget 1:466–469. doi: 10.18632/oncotarget.101102 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schuller HM (2013) Effects of tobacco constituents and psychological stress on the β-adrenergic regulation of non-small cell lung cancer and pancreatic cancer: implications for intervention. Cancer Biomark 13:133–144. doi: 10.3233/cbm-130323 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schuller HM, Cole B (1989) Regulation of cell proliferation by β-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis 10:1753–1755. doi: 10.1093/carcin/10.9.1753 CrossRefPubMedGoogle Scholar
  77. Schuller HM, Witschi HP, Nylen E, Joshi PA, Correa E, Becker KL (1990) Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res 50:1960–1965PubMedGoogle Scholar
  78. Schuller HM, Tithof PK, Williams M, Plummer H 3rd (1999) The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid. Cancer Res 59:4510–4515PubMedGoogle Scholar
  79. Shan T, Cui X, Li W, Lin W, Li Y, Chen X, Wu T (2014) Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines. Cancer Sci 105:847–856. doi: 10.1111/cas.12438 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shang ZJ, Liu K, de Liang F (2009) Expression of β2-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med 38:371–376. doi: 10.1111/j.1600-0714.2008.00691.x CrossRefPubMedGoogle Scholar
  81. Shen SG, Zhang D, Hu HT, Li JH, Wang Z, Ma QY (2008) Effects of alpha-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro. World J Gastroenterol 14:2358–2363. doi: 10.3748/wjg.14.2358 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shi M et al (2011) The β2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat 125:351–362. doi: 10.1007/s10549-010-0822-2 CrossRefPubMedGoogle Scholar
  83. Shi M et al (2013) Catecholamine-induced β2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. J Immunol (Baltimore, MD: 1950) 190:5600–5608. doi: 10.4049/jimmunol.1202364 CrossRefGoogle Scholar
  84. Sloan EK et al (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:7042–7052. doi: 10.1158/0008-5472.can-10-0522 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Spiegel D (1994) Health caring. Psychosocial support for patients with cancer. Cancer 74:1453–1457CrossRefPubMedGoogle Scholar
  86. Spiegel D, Giese-Davis J (2003) Depression and cancer: mechanisms and disease progression. Biol Psychiatry 54:269–282CrossRefPubMedGoogle Scholar
  87. Tang J, Li Z, Lu L, Cho CH (2013) β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 23:533–542. doi: 10.1016/j.semcancer.2013.08.009 CrossRefPubMedGoogle Scholar
  88. Thaker PH et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944. doi: 10.1038/nm1447 CrossRefPubMedGoogle Scholar
  89. Thaker PH, Lutgendorf SK, Sood AK (2007) The neuroendocrine impact of chronic stress on cancer. Cell Cycle (Georgetown, TX) 6:430–433. doi: 10.4161/cc.6.4.3829 CrossRefGoogle Scholar
  90. Thiele M, Albillos A, Abazi R, Wiest R, Gluud LL, Krag A (2015) Non-selective β-blockers may reduce risk of hepatocellular carcinoma: a meta-analysis of randomized. Liver Int 35:2009–2016. doi: 10.1111/liv.12782 CrossRefPubMedGoogle Scholar
  91. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. doi: 10.3322/caac.21262 CrossRefPubMedGoogle Scholar
  92. Vaklavas C, Chatzizisis YS, Tsimberidou AM (2011) Common cardiovascular medications in cancer therapeutics. Pharmacol Ther 130:177–190. doi: 10.1016/j.pharmthera.2011.01.009 CrossRefPubMedGoogle Scholar
  93. Wang L, Liu H, Chen X, Zhang M, Xie K, Ma Q (2012) Immune sculpting of norepinephrine on MHC-I, B7-1, IDO and B7-H1 expression and regulation of proliferation and invasion in pancreatic carcinoma cells. PLoS One 7:e45491. doi: 10.1371/journal.pone.0045491 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang HM et al (2013) Improved survival outcomes with the incidental use of β-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 24:1312–1319. doi: 10.1093/annonc/mds616 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Watkins JL et al (2015) Clinical impact of selective and nonselective β-blockers on survival in patients with ovarian cancer. Cancer 121:3444–3451. doi: 10.1002/cncr.29392 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Westfall TCWaDP (2011) Adrenergic agonists and antagonists. In: Brunton LL (ed) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. The McGraw-HillGoogle Scholar
  97. Wilson JM, Lorimer E, Tyburski MD, Williams CL (2015) β-Adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells. Cancer Biol Ther 16:1364–1374. doi: 10.1080/15384047.2015.1070988 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wolter JK et al (2014) Anti-tumor activity of the β-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 5:161–172. doi: 10.18632/oncotarget.1083 PubMedGoogle Scholar
  99. Wong HP et al (2011) Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci 88:1108–1112. doi: 10.1016/j.lfs.2011.04.007 CrossRefPubMedGoogle Scholar
  100. Wu WK et al (2005) 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone from cigarette smoke stimulates colon cancer growth via β-adrenoceptors. Cancer Res 65:5272–5277. doi: 10.1158/0008-5472.can-05-0205 CrossRefPubMedGoogle Scholar
  101. Yang EV et al (2006) Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 66:10357–10364. doi: 10.1158/0008-5472.can-06-2496 CrossRefPubMedGoogle Scholar
  102. Yang EV et al (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275. doi: 10.1016/j.bbi.2008.10.005 CrossRefPubMedGoogle Scholar
  103. Zhang D, Ma QY, Hu HT, Zhang M (2010) β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol Ther 10:19–29. doi: 10.4161/cbt.10.1.11944 CrossRefPubMedGoogle Scholar
  104. Zhang P, He X, Tan J, Zhou X, Zou L (2011) β-Arrestin2 mediates β-2 adrenergic receptor signaling inducing prostate cancer cell progression. Oncol Rep 26:1471–1477. doi: 10.3892/or.2011.1417 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marisa Coelho
    • 1
    • 2
    • 3
  • Cátia Soares-Silva
    • 1
    • 2
  • Daniela Brandão
    • 1
    • 4
  • Franca Marino
    • 3
  • Marco Cosentino
    • 3
  • Laura Ribeiro
    • 1
    • 2
    • 4
  1. 1.Department of Biochemistry, Faculty of MedicineUniversity of PortoPortoPortugal
  2. 2.I3S-Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  3. 3.Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
  4. 4.Department of Medical Education and Simulation, Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations