Current status in cancer cell reprogramming and its clinical implications

  • Kenan Izgi
  • Halit Canatan
  • Banu IskenderEmail author
Review – Cancer Research



The technology of reprogramming a terminally differentiated cell to an embryonic-like state uncovered the possibility of reprogramming a malignant cell back to a more manageable stem cell-like state. Since the current cancer models suffer from reflecting heterogeneous tumour structure and limited to express the late-stage markers, the induced pluripotent stem cell (iPSC) technology could provide an alternative model to recapitulate the early stages of cancer. Generation of iPSCs from cancer cells could offer a tool for understanding the mechanisms of tumour initiation–progression in vitro, a platform for studying tumour heterogeneity and origin of cancer stem cells and a source for cancer type-specific drug discovery studies.


In this review, we discussed the recent findings in reprogramming cancer cells with a special emphasis on similarities between cancer cells and pluripotent cells. We presented the basis of challenges in cancer cell reprogramming including the current problems in reprogramming, cancer-specific epigenetic state and chromosomal aberrations.


Cancer epigenetics represent the major hurdle before the prospective use of cancer iPSCs as a model system and for biomarker research. When the reprogramming process is optimised for cancer cell types, it might serve for two purposes: identification of the specific epigenetic state of cancer as well as reversion of the malignant phenotype to a potentially malignant but manageable state.


Reprogramming cancer cells would serve for our understanding of cancer-specific epigenome and elucidation of overlapping mechanisms shared by cancer-initiating cells and pluripotent cells.


Reprogramming Cancer Induced pluripotent stem cells Pluripotency Epigenetics 



This study was supported by the grant from The Scientific and Technological Research Council of Turkey (No: 114S452 and 113S927).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Akhavan-Niaki H, Samadani AA (2014) Molecular insight in gastric cancer induction: an overview of cancer stemness genes. Cell Biochem Biophys 68:463–473. doi: 10.1007/s12013-013-9749-7 PubMedCrossRefGoogle Scholar
  2. Bareiss PM et al (2013) SOX2 expression associates with stem cell state in human ovarian carcinoma. Cancer Res 73:5544–5555. doi: 10.1158/0008-5472.CAN-12-4177 PubMedCrossRefGoogle Scholar
  3. Bar-Nur O, Russ HA, Efrat S, Benvenisty N (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23. doi: 10.1016/j.stem.2011.06.007 PubMedCrossRefGoogle Scholar
  4. Blelloch RH et al (2004) Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci USA 101:13985–13990. doi: 10.1073/pnas.0405015101 PubMedPubMedCentralGoogle Scholar
  5. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872–884. doi: 10.1038/nrm1744 PubMedCrossRefGoogle Scholar
  6. Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. doi: 10.1016/j.cell.2005.08.020 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Buganim Y, Faddah DA, Jaenisch R (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14:427–439. doi: 10.1038/nrg3473 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW (2011) BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 112:2729–2741. doi: 10.1002/jcb.23234 PubMedCrossRefGoogle Scholar
  9. Carette JE et al (2010) Generation of iPSCs from cultured human malignant cells. Blood 115:4039–4042. doi: 10.1182/blood-2009-07-231845 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen X et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117. doi: 10.1016/j.cell.2008.04.043 PubMedCrossRefGoogle Scholar
  11. Chiou SH et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095. doi: 10.1158/1078-0432.CCR-07-4404 PubMedCrossRefGoogle Scholar
  12. Corominas-Faja B et al (2013) Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 12:3109–3124. doi: 10.4161/cc.26173 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dang CV (2007) The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc 4:35–53Google Scholar
  14. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27. doi: 10.1016/j.cell.2012.06.013 PubMedCrossRefGoogle Scholar
  15. Ding X, Wang X, Sontag S, Qin J, Wanek P, Lin Q, Zenke M (2014) The polycomb protein Ezh2 impacts on induced pluripotent stem cell generation. Stem Cells Dev 23:931–940. doi: 10.1089/scd.2013.0267 PubMedCrossRefGoogle Scholar
  16. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463. doi: 10.1038/nature02625 PubMedCrossRefGoogle Scholar
  17. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K (2008) Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26:2467–2474. doi: 10.1634/stemcells.2008-0317 PubMedCrossRefGoogle Scholar
  18. Eminli S et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976. doi: 10.1038/ng.428 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Folmes CD, Terzic A (2016) Energy metabolism in the acquisition and maintenance of stemness. Semi Cell Dev Biol. doi: 10.1016/j.semcdb.2016.02.010 Google Scholar
  20. Folmes CD et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. doi: 10.1016/j.cmet.2011.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Folmes CD, Martinez-Fernandez A, Faustino RS, Yamada S, Perez-Terzic C, Nelson TJ, Terzic A (2013) Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. J Cardiovasc Transl Res 6:10–21. doi: 10.1007/s12265-012-9431-2 PubMedCrossRefGoogle Scholar
  22. Gandre-Babbe S et al (2013) Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 121:4925–4929. doi: 10.1182/blood-2013-01-478412 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gangemi RM et al (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27:40–48. doi: 10.1634/stemcells.2008-0493 PubMedCrossRefGoogle Scholar
  24. Giorgetti A et al (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357. doi: 10.1016/j.stem.2009.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisua Belmonte JC (2010) Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc 5:811–820. doi: 10.1038/nprot.2010.16 PubMedCrossRefGoogle Scholar
  26. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640PubMedGoogle Scholar
  27. Hawkins RD et al (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6:479–491. doi: 10.1016/j.stem.2010.03.018 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Heng HH, Bremer SW, Stevens JB, Ye KJ, Liu G, Ye CJ (2009) Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective. J Cell Physiol 220:538–547. doi: 10.1002/jcp.21799 PubMedCrossRefGoogle Scholar
  29. Herreros-Villanueva M et al (2013) SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2:e61. doi: 10.1038/oncsis.2013.23 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523. doi: 10.1242/dev.020867 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885. doi: 10.1101/gad.1213504 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654. doi: 10.1126/science.1239278 PubMedCrossRefGoogle Scholar
  33. Hu K et al (2011) Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117:e109–e119. doi: 10.1182/blood-2010-07-298331 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275. doi: 10.1038/nbt.1502 PubMedCrossRefGoogle Scholar
  35. Hussein SM et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62. doi: 10.1038/nature09871 PubMedCrossRefGoogle Scholar
  36. Hutz K et al (2014) The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis 35:942–950. doi: 10.1093/carcin/bgt410 PubMedCrossRefGoogle Scholar
  37. Ichida JK et al (2014) Notch inhibition allows oncogene-independent generation of iPS cells. Nat Chem Biol 10:632–639. doi: 10.1038/nchembio.1552 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Iskender B, Izgi K, Canatan H (2016) Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumour Biol. doi: 10.1007/s13277-016-5226-4 Google Scholar
  39. Islam SM et al (2015) Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells. Cancer Sci 106:1351–1361. doi: 10.1111/cas.12746 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q (2014) Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer 135:2741–2748. doi: 10.1002/ijc.28690 PubMedCrossRefGoogle Scholar
  41. Ivanov NA et al (2016) Strong components of epigenetic memory in cultured human fibroblasts related to site of origin and donor age. PLoS Genet 12:e1005819. doi: 10.1371/journal.pgen.1005819 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jeter CR, Yang T, Wang J, Chao HP, Tang DG (2015) Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells 33:2381–2390. doi: 10.1002/stem.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kamachi Y, Uchikawa M, Kondoh H (2000) Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16:182–187PubMedCrossRefGoogle Scholar
  44. Kang PJ et al (2014) Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules. Biomaterials 35:7336–7345. doi: 10.1016/j.biomaterials.2014.05.015 PubMedCrossRefGoogle Scholar
  45. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28:1069–1078. doi: 10.1038/nbt.1678 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kim JB et al (2009) Induced pluripotency in adult neural stem cells. Cell 136:411–419. doi: 10.1016/j.cell.2009.01.023 PubMedCrossRefGoogle Scholar
  47. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290. doi: 10.1038/nature09342 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kim J et al (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3:2088–2099. doi: 10.1016/j.celrep.2013.05.036 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kimura T et al (2015) Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells 33:45–55. doi: 10.1002/stem.1838 PubMedCrossRefGoogle Scholar
  50. Koche RP et al (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8:96–105. doi: 10.1016/j.stem.2010.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S, Sarkar FH (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS ONE 5:e12445. doi: 10.1371/journal.pone.0012445 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kotini AG et al (2015) Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 33:646–655. doi: 10.1038/nbt.3178 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kumano K et al (2012) Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119:6234–6242. doi: 10.1182/blood-2011-07-367441 PubMedCrossRefGoogle Scholar
  54. Ladewig J, Koch P, Brustle O (2013) Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 14:225–236CrossRefGoogle Scholar
  55. Lee HJ et al (2015a) Positive expression of NANOG, mutant p53, and CD44 is directly associated with clinicopathological features and poor prognosis of oral squamous cell carcinoma. BMC Oral Health 15:153. doi: 10.1186/s12903-015-0120-9 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee SR et al (2015b) Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer. Clin Cancer Res 21:5391–5403. doi: 10.1158/1078-0432.CCR-14-2680 PubMedCrossRefGoogle Scholar
  57. Lin T, Wu S (2015) Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int 2015:794632. doi: 10.1155/2015/794632 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124. doi: 10.1261/rna.1162708 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lin T, Ding YQ, Li JM (2012a) Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol 29:878–885. doi: 10.1007/s12032-011-9860-9 PubMedCrossRefGoogle Scholar
  60. Lin ZS, Chu HC, Yen YC, Lewis BC, Chen YW (2012b) Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS ONE 7:e43593. doi: 10.1371/journal.pone.0043593 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lister R et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73. doi: 10.1038/nature09798 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu XF, Yang WT, Xu R, Liu JT, Zheng PS (2014a) Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS ONE 9:e87092. doi: 10.1371/journal.pone.0087092 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu Y et al (2014b) Reprogramming of MLL-AF9 leukemia cells into pluripotent stem cells. Leukemia 28:1071–1080. doi: 10.1038/leu.2013.304 PubMedCrossRefGoogle Scholar
  64. Loh YH et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440. doi: 10.1038/ng1760 PubMedCrossRefGoogle Scholar
  65. Mahalingam D, Kong CM, Lai J, Tay LL, Yang H, Wang X (2012) Reversal of aberrant cancer methylome and transcriptome upon direct reprogramming of lung cancer cells. Sci Rep 2:592. doi: 10.1038/srep00592 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Masui S et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635. doi: 10.1038/ncb1589 PubMedCrossRefGoogle Scholar
  67. Mathieu J et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71:4640–4652. doi: 10.1158/0008-5472.CAN-10-3320 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mayshar Y et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–531. doi: 10.1016/j.stem.2010.07.017 PubMedCrossRefGoogle Scholar
  69. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337. doi: 10.1038/nature12624 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Meng HM et al (2010) Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9:295–302. doi: 10.4161/cbt.9.4.10666 PubMedCrossRefGoogle Scholar
  71. Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (2012) c-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553. doi: 10.1158/1078-0432.CCR-12-0977 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mimeault M, Batra SK (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:949–964. doi: 10.2119/molmed.2011.00115 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mishra A, Brat DJ, Verma M (2015) P53 tumor suppression network in cancer epigenetics. Methods Mol Biol 1238:597–605. doi: 10.1007/978-1-4939-1804-1_31 PubMedCrossRefGoogle Scholar
  74. Miyoshi N et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Nat Acad Sci USA 107:40–45. doi: 10.1073/pnas.0912407107 PubMedCrossRefGoogle Scholar
  75. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161. doi: 10.1016/j.stem.2010.07.007 PubMedCrossRefGoogle Scholar
  76. Moon JH et al (2011) Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 21:1305–1315. doi: 10.1038/cr.2011.107 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moon JH et al (2013) Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem Biophys Res Commun 431:444–449. doi: 10.1016/j.bbrc.2012.12.149 PubMedCrossRefGoogle Scholar
  78. Moore JBt et al (2015) Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line. Front Cell Dev Biol 3:15. doi: 10.3389/fcell.2015.00015 Google Scholar
  79. Munoz P, Iliou MS, Esteller M (2012) Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 6:620–636. doi: 10.1016/j.molonc.2012.10.006 PubMedCrossRefGoogle Scholar
  80. Nakagawa M et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106. doi: 10.1038/nbt1374 PubMedCrossRefGoogle Scholar
  81. Nandan MO, Yang VW (2009) The role of Kruppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 24:1343–1355PubMedPubMedCentralGoogle Scholar
  82. Nie Z et al (2012) c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic. Stem cells Cell 151:68–79. doi: 10.1016/j.cell.2012.08.033 PubMedGoogle Scholar
  83. Niibe K et al (2011) Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS ONE 6:e17610. doi: 10.1371/journal.pone.0017610 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Noguchi K et al (2015) Susceptibility of pancreatic cancer stem cells to reprogramming. Cancer Sci 106:1182–1187. doi: 10.1111/cas.12734 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ohi Y et al (2011) Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 13:541–549. doi: 10.1038/ncb2239 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ohnishi K et al (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–677. doi: 10.1016/j.cell.2014.01.005 PubMedCrossRefGoogle Scholar
  87. Oshima N et al (2014) Induction of cancer stem cell properties in colon cancer cells by defined factors. PLoS ONE 9:e101735. doi: 10.1371/journal.pone.0101735 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Panopoulos AD et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22:168–177. doi: 10.1038/cr.2011.177 PubMedCrossRefGoogle Scholar
  89. Papp B, Plath K (2011) Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 21:486–501. doi: 10.1038/cr.2011.28 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Phetfong J, Supokawej A, Wattanapanitch M, Kheolamai P, Yaowalak U, Issaragrisil S (2016) Cell type of origin influences iPSC generation and differentiation to cells of the hematoendothelial lineage. Cell Tissue Res 365:101–112. doi: 10.1007/s00441-016-2369-y PubMedCrossRefGoogle Scholar
  91. Pirozzi G et al (2011) Epithelial to mesenchymal transition by TGFbeta-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS ONE 6:e21548. doi: 10.1371/journal.pone.0021548 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Polo JM et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855. doi: 10.1038/nbt.1667 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Postovit LM et al (2008) Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Nat Acad Sci USA 105:4329–4334. doi: 10.1073/pnas.0800467105 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rais Y et al (2013) Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70. doi: 10.1038/nature12587 PubMedCrossRefGoogle Scholar
  95. Rasmussen MA et al (2014) Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Rep 3:404–413. doi: 10.1016/j.stemcr.2014.07.006 CrossRefGoogle Scholar
  96. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280:24731–24737. doi: 10.1074/jbc.M502573200 PubMedCrossRefGoogle Scholar
  97. Ron-Bigger S, Bar-Nur O, Isaac S, Bocker M, Lyko F, Eden A (2010) Aberrant epigenetic silencing of tumor suppressor genes is reversed by direct reprogramming. Stem Cells 28:1349–1354. doi: 10.1002/stem.468 PubMedCrossRefGoogle Scholar
  98. Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D (2014) Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet 10:e1004432. doi: 10.1371/journal.pgen.1004432 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ruiz S et al (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Pro Nat Acad Sci USA 109:16196–16201. doi: 10.1073/pnas.1202352109 CrossRefGoogle Scholar
  100. Rybak AP, Tang D (2013) SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal 25:2734–2742. doi: 10.1016/j.cellsig.2013.08.041 PubMedCrossRefGoogle Scholar
  101. Sanchez-Freire V et al (2014) Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 64:436–448. doi: 10.1016/j.jacc.2014.04.056 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Semi K, Yamada Y (2015) Induced pluripotent stem cell technology for dissecting the cancer epigenome. Cancer Sci 106:1251–1256. doi: 10.1111/cas.12758 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Seymour T, Twigger AJ, Kakulas F (2015) Pluripotency genes and their functions in the normal and aberrant breast and brain. Int J Mol Sci 16:27288–27301. doi: 10.3390/ijms161126024 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shan J et al (2012) Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56:1004–1014. doi: 10.1002/hep.25745 PubMedCrossRefGoogle Scholar
  105. Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, Chellappan SP (2012) EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 11:73. doi: 10.1186/1476-4598-11-73 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2. doi: 10.3389/fcell.2015.00002 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263. doi: 10.1101/gad.1963910 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stricker SH et al (2013) Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 27:654–669. doi: 10.1101/gad.212662.112 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tafani M et al (2014) Reprogramming cancer cells in endocrine-related tumors: open issues. Curr Med Chem 21:1146–1151PubMedCrossRefGoogle Scholar
  110. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  111. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  112. Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510. doi: 10.1038/nrc3486 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tobin SC, Kim K (2012) Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming. FEBS Lett 586:2874–2881. doi: 10.1016/j.febslet.2012.07.024 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tonini T, D’Andrilli G, Fucito A, Gaspa L, Bagella L (2008) Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J Cell Physiol 214:295–300. doi: 10.1002/jcp.21241 PubMedCrossRefGoogle Scholar
  115. Utikal J, Maherali N, Kulalert W, Hochedlinger K (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122:3502–3510. doi: 10.1242/jcs.054783 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vaira V et al (2013) Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res 73:2695–2705. doi: 10.1158/0008-5472.CAN-12-4232 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vencio EF et al (2012) Reprogramming of prostate cancer-associated stromal cells to embryonic stem-like. Prostate 72:1453–1463. doi: 10.1002/pros.22497 PubMedCrossRefGoogle Scholar
  118. Vidal SE, Amlani B, Chen T, Tsirigos A, Stadtfeld M (2014) Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming. Stem Cell Rep 3:574–584. doi: 10.1016/j.stemcr.2014.08.003 CrossRefGoogle Scholar
  119. Villasante A, Piazzolla D, Li H, Gomez-Lopez G, Djabali M, Serrano M (2011) Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. Cell Cycle 10:1488–1498PubMedPubMedCentralCrossRefGoogle Scholar
  120. Virani S, Colacino JA, Kim JH, Rozek LS (2012) Cancer epigenetics: a brief review. ILAR J 53:359–369. doi: 10.1093/ilar.53.3-4.359 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wang J et al (2013) Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics Proteomics Bioinformatics 11:304–311. doi: 10.1016/j.gpb.2013.08.002 CrossRefGoogle Scholar
  122. Wang D et al (2014) Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 5:10803–10815. doi: 10.18632/oncotarget.2506 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Weina K, Utikal J (2014) SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med 3:19. doi: 10.1186/2001-1326-3-19 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114:A160–A167PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12. doi: 10.1016/j.stem.2007.12.001 PubMedCrossRefGoogle Scholar
  126. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813. doi: 10.1038/385810a0 PubMedCrossRefGoogle Scholar
  127. Wong CW et al (2010) Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28:1510–1517. doi: 10.1002/stem.477 PubMedCrossRefGoogle Scholar
  128. Xie B, Zhang H, Wei R, Li Q, Weng X, Kong Q, Liu Z (2016) Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction 151:9–16. doi: 10.1530/REP-15-0338 PubMedCrossRefGoogle Scholar
  129. Yi L, Lu C, Hu W, Sun Y, Levine AJ (2012) Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res 72:5635–5645. doi: 10.1158/0008-5472.CAN-12-1451 PubMedCrossRefGoogle Scholar
  130. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5:237–241. doi: 10.1016/j.stem.2009.08.001 PubMedCrossRefGoogle Scholar
  131. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  132. Yu F et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172. doi: 10.1038/onc.2010.591 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yulin X, Lizhen L, Lifei Z, Shan F, Ru L, Kaimin H, Huang H (2012) Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells. Folia Biol 58:221–230Google Scholar
  134. Zammarchi F et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372. doi: 10.1016/j.ajpath.2010.11.021 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32:2249–2260. doi: 10.1038/onc.2012.237 PubMedCrossRefGoogle Scholar
  136. Zhu S et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7:651–655. doi: 10.1016/j.stem.2010.11.015 PubMedCrossRefGoogle Scholar
  137. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883. doi: 10.1101/cshperspect.a001883 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Medical Biology, Faculty of MedicineErciyes UniversityMelikgazi, KayseriTurkey
  2. 2.Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityMelikgazi, KayseriTurkey
  3. 3.Betul-Ziya Eren Genome and Stem Cell CentreErciyes UniversityMelikgazi, KayseriTurkey

Personalised recommendations