Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 142, Issue 11, pp 2217–2229 | Cite as

Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy

  • Hadi Samadian
  • Samira Hosseini-Nami
  • Seyed Kamran Kamrava
  • Habib GhaznaviEmail author
  • Ali Shakeri-ZadehEmail author
Review – Cancer Research

Abstract

Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on “gold nanoparticles” and “folate targeting,” there are a few reports on “folate-conjugated gold nanoparticles” in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.

Keywords

Cancer Nanotechnology Targeting Folic acid Gold nanoparticles 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Asadishad B, Vossoughi M, Alemzadeh I (2010) Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind Eng Chem Res 49(4):1958–1963CrossRefGoogle Scholar
  2. Bazak R et al (2014) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bazak R et al (2014) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784PubMedPubMedCentralCrossRefGoogle Scholar
  4. Begg A et al (1987) Radiosensitization in vitro by cis-diammine (1, 1-cyclobutanedicarboxylato) platinum (II)(carboplatin, JM8) and ethylenediammine-malonatoplatinum (II)(JM40). Radiother Oncol 9(2):157–165PubMedCrossRefGoogle Scholar
  5. Beik J et al (2016) Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E 81:308–314CrossRefGoogle Scholar
  6. Bertrand N et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedCrossRefGoogle Scholar
  7. Bharali DJ, Mousa SA (2010) Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther 128(2):324–335PubMedCrossRefGoogle Scholar
  8. Biselli-Chicote P et al (2012) VEGF gene alternative splicing: pro-and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol 138(3):363–370PubMedCrossRefGoogle Scholar
  9. Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, LondonGoogle Scholar
  10. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651PubMedCrossRefGoogle Scholar
  11. Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B 72(1):128–134CrossRefGoogle Scholar
  12. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626PubMedCrossRefGoogle Scholar
  13. Cai W et al (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cai H-H et al (2015) Gold nanoprobes-based resonance rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens Bioelectron 74:165–169PubMedCrossRefGoogle Scholar
  15. Chen J et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477PubMedCrossRefGoogle Scholar
  16. Chen J et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheng H et al (2015) Gold nanoparticle-enhanced near infrared fluorescent nanocomposites for targeted bio-imaging. RSC Adv 5(1):20–26CrossRefGoogle Scholar
  18. Chithrani DB et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728PubMedCrossRefGoogle Scholar
  19. Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6(3):285–304PubMedCrossRefGoogle Scholar
  20. del Burgo LS, Pedraz J, Orive G (2014) Advanced nanovehicles for cancer management. Drug Discov Today 19(10):1659–1670CrossRefGoogle Scholar
  21. Dharmatti R et al (2014) Surface orchestration of gold nanoparticles using cysteamine as linke r and folate as navigating molecule for synaphic delivery of doxorubicin. J Nanomed Res 1(1):00002Google Scholar
  22. Drouet F, Lagrange J-L (2010) Dose de tolérance à l’irradiation des tissus sains: la moelle osseuse. Cancer/Radiothérapie 14(4):392–404CrossRefGoogle Scholar
  23. Fazilati M (2014) Folate decorated magnetite nanoparticles: synthesis and targeted therapy against ovarian cancer. Cell Biol Int 38(2):154–163PubMedCrossRefGoogle Scholar
  24. Garin-Chesa P et al (1993) Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142(2):557PubMedPubMedCentralGoogle Scholar
  25. Geng J et al (2012) Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 8(15):2421–2429PubMedCrossRefGoogle Scholar
  26. Ghaznavi H et al (2015) Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population. Blood Coagul Fibrinolysis 26(8):869–873. doi: 10.1097/MBC.0000000000000292 PubMedCrossRefGoogle Scholar
  27. Ghaznavi H et al (2015) The neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res 37(7):624–632. doi: 10.1179/1743132815Y.0000000037 PubMedCrossRefGoogle Scholar
  28. Hainfeld JF, Slatkin DN, Smilowitz HM (2005) The use of gold nanoparticles to enhance radiotherapy in mice. Cancer Res 65(9 Supplement):287Google Scholar
  29. Hainfeld JF et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60(8):977–986PubMedCrossRefGoogle Scholar
  30. Hering K et al (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390(1):113–124PubMedCrossRefGoogle Scholar
  31. Huang P et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809PubMedCrossRefGoogle Scholar
  32. Huff TB et al (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132. doi: 10.2217/17435889.2.1.125 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jain S, Hirst D, O’sullivan J (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113. doi: 10.1259/bjr/59448833 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jin H et al (2012) Photothermal effects of folate-conjugated Au nanorods on HepG2 cells. Appl Microbiol Biotechnol 94(5):1199–1208PubMedCrossRefGoogle Scholar
  35. Kennedy LC et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183PubMedCrossRefGoogle Scholar
  36. Kerker M (2013) The scattering of light and other electromagnetic radiation: physical chemistry—a series of monographs, vol 16. Academic press, CambridgeGoogle Scholar
  37. Khoei S et al (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol 90(5):351–356PubMedCrossRefGoogle Scholar
  38. Khoshgard K et al (2014) Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys Med Biol 59(9):2249PubMedCrossRefGoogle Scholar
  39. Kirpotin DB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740PubMedCrossRefGoogle Scholar
  40. Kong T et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4(9):1537–1543PubMedCrossRefGoogle Scholar
  41. Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10PubMedCrossRefGoogle Scholar
  42. Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324PubMedCrossRefGoogle Scholar
  43. Li J-L et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326PubMedCrossRefGoogle Scholar
  44. Li R et al (2011) Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 49(5):1797–1805CrossRefGoogle Scholar
  45. Li W et al (2015) Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J Cancer Res Clin Oncol 142(3):619–632PubMedCrossRefGoogle Scholar
  46. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  47. Liu C-J et al (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55(4):931PubMedCrossRefGoogle Scholar
  48. Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controll Release 65(1):271–284CrossRefGoogle Scholar
  49. Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928PubMedPubMedCentralCrossRefGoogle Scholar
  50. Mehdizadeh A et al (2014) The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 29(3):939–948PubMedCrossRefGoogle Scholar
  51. Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15(19):842–850PubMedCrossRefGoogle Scholar
  52. Mitra RN et al (2012) An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. Biomaterials 33(5):1500–1508PubMedCrossRefGoogle Scholar
  53. Pandey S et al (2013) Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C 33(7):3716–3722CrossRefGoogle Scholar
  54. Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12(3):185–271CrossRefGoogle Scholar
  55. Parker N et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293PubMedCrossRefGoogle Scholar
  56. Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16(2):108–123PubMedCrossRefGoogle Scholar
  57. Patra CR et al (2008) Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol 4(2):99–132Google Scholar
  58. Prabaharan M et al (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075PubMedCrossRefGoogle Scholar
  59. Rahman WN et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5(2):136–142CrossRefGoogle Scholar
  60. Rathinaraj P et al (2015) Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Res Lett 10(1):1–10CrossRefGoogle Scholar
  61. Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem 125(1):166–171PubMedCrossRefGoogle Scholar
  62. Saw PE et al (2013) Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J Mater Chem B 1(37):4723–4726CrossRefGoogle Scholar
  63. Sha MY et al (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine 2(5):725–734. doi: 10.2217/17435889.2.5.725 PubMedCrossRefGoogle Scholar
  64. Shakeri-Zadeh A et al (2013) Targeted, monitored, and controlled chemotherapy: a multimodal nanotechnology-based approach against cancer. ISRN Nanotechnol 2013:5. doi: 10.1155/2013/629510 CrossRefGoogle Scholar
  65. Shakeri-Zadeh A et al (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol as the linker. JONPI 1:13–23Google Scholar
  66. Shakeri-Zadeh A, Ghasemifard M, Mansoori GA (2010a) Structural and optical characterization of folate-conjugated gold-nanoparticles. Phys E 42(5):1272–1280CrossRefGoogle Scholar
  67. Shakeri-Zadeh A et al (2010b) Cancerous cells targeting and destruction using folate-conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4(1):06–12Google Scholar
  68. Shakeri-Zadeh A et al (2014a) A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl 29(4):548–556PubMedCrossRefGoogle Scholar
  69. Shakeri-Zadeh A et al (2014b) A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med Sci 29(2):847–853PubMedCrossRefGoogle Scholar
  70. Shakeri-Zadeh A et al (2015a) Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J Mater Chem B 3(9):1879–1887CrossRefGoogle Scholar
  71. Shakeri-Zadeh A et al (2015b) Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J Med Ultrason 42(1):9–16CrossRefGoogle Scholar
  72. Singhal S, Nie S, Wang MD (2010) Nanotechnology applications in surgical oncology. Annu Rev Med 61:359PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sinha R et al (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917PubMedCrossRefGoogle Scholar
  74. Sivakumar B et al (2014) Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol 10(6):885–899PubMedCrossRefGoogle Scholar
  75. Soltanpour MS et al (2013) Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis. J Res Med Sci 18(6):487PubMedPubMedCentralGoogle Scholar
  76. Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5(2):121–128CrossRefGoogle Scholar
  77. Syu WJ et al (2012) Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model. Small 8(13):2060–2069PubMedCrossRefGoogle Scholar
  78. Talekar M et al (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962PubMedCrossRefGoogle Scholar
  79. Tiwari PM et al (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63CrossRefGoogle Scholar
  80. Tong L et al (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19(20):3136–3141PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tork MB et al (2014) In situ green synthesis of silver nanoparticles/chitosan/poly vinyl alcohol/poly ethylene glycol hydrogel nanocomposite for novel finishing of nasal tampons. J Ind Text 45(6):1399–1416. doi: 10.1177/1528083714560255 CrossRefGoogle Scholar
  82. Veigele WJ (1973) Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to Z = 94. Atomic Data Nucl Data Tables 5(1):51–111CrossRefGoogle Scholar
  83. Wang Y et al (2015) A photodynamic therapy combined with topical 5-aminolevulinic acid and systemic hematoporphyrin derivative is more efficient but less phototoxic for cancer. J Cancer Res Clin Oncol 142(4):813–821PubMedCrossRefGoogle Scholar
  84. Yin M et al (2012) Water-dispersible multiwalled carbon nanotube/iron oxide hybrids as contrast agents for cellular magnetic resonance imaging. Carbon 50(6):2162–2170CrossRefGoogle Scholar
  85. Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100(2):247–256PubMedCrossRefGoogle Scholar
  86. Yu B et al (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhang Z et al (2010) Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic Med Chem 18(15):5528–5534CrossRefGoogle Scholar
  88. Zhang X-Q et al (2012a) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhang X-D et al (2012b) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33(27):6408–6419PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hadi Samadian
    • 1
  • Samira Hosseini-Nami
    • 2
  • Seyed Kamran Kamrava
    • 2
  • Habib Ghaznavi
    • 3
    Email author
  • Ali Shakeri-Zadeh
    • 4
    • 5
    Email author
  1. 1.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical Sciences (TUMS)TehranIran
  2. 2.Clinical Nanomedicine Laboratory, ENT and Head and Neck Surgery Research Center, Rasoul Akram HospitalIran University of Medical Sciences (IUMS)TehranIran
  3. 3.Zahedan University of Medical Sciences (ZaUMS)ZahedanIran
  4. 4.Medical Physics Department, School of MedicineIran University of Medical Sciences (IUMS)TehranIran
  5. 5.Diagnostic Nanoparticles Research CoreIran University of Medical Sciences (IUMS)TehranIran

Personalised recommendations