Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 142, Issue 8, pp 1781–1793 | Cite as

ERG expression in prostate cancer: biological relevance and clinical implication

  • Hatem Abou-Ouf
  • Liena Zhao
  • Tarek A. BismarEmail author
Review – Clinical Oncology

Abstract

Introduction

Screening for increased levels of prostate-specific antigen (PSA) has allowed early detection of a large majority of prostate cancer (PCa) cases. However, the relative lack of specificity of PSA has resulted in significant over-diagnosis and unnecessary treatment for indolent tumors. The fusion of the transmembrane protease serine 2 with E26 transformation-specific family genes, particularly ERG, is the most widespread genetic alteration in prostate cancer, and data suggest that it is more specific for neoplastic prostate disease and may be of added prognostic value and point toward molecular subtype of PCa.

Methods

In this review, retrospective studies and clinical trials were analyzed to highlight the recent advances in our understanding of the cellular consequence of ERG rearrangement, describe its interactions with other genetic and molecular pathways, and discuss its potential diagnostic and prognostic value.

Conclusion

ERG over-expression has an emerging role in the diagnosis of PCa pathology, although there is still debate about its prognostic value. Elucidation of the mechanisms of ERG gene rearrangements and expression promises novel therapeutic and diagnostic avenues for prostate cancer.

Keywords

ERG Prostate cancer Clinical implication Prognosis Diagnosis Gene signatures 

Notes

Acknowledgments

LZ and TAB drafted the manuscript. TAB supervised and oversight the manuscript outline.

Funding

This work was supported in part by the Prostate Cancer Foundation Young Investigator Award (T.A.B). This work was also supported by Prostate cancer Canada and is proudly funded by the Movember Foundation, Grant #B2013-01.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare in this study.

Ethical approval

NA (review article).

References

  1. Al Bashir S, Alshalalfa M, Hegazy SA, Dolph M, Donnelly B, Bismar TA (2014) Cysteine-rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients’ prognosis. J Hematol Oncol 7:21. doi: 10.1186/1756-8722-7-21 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X et al (2011) Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med 3(72):72ra17. doi: 10.1126/scitranslmed.3001498 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P et al (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27(3):253–263. doi: 10.1038/sj.onc.1210640 PubMedCrossRefGoogle Scholar
  4. Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 60(16):4629–4637PubMedGoogle Scholar
  5. Badawi AF (2000) The role of prostaglandin synthesis in prostate cancer. BJU Int 85(4):451–462PubMedCrossRefGoogle Scholar
  6. Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y et al (2013) ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 27(6):683–698. doi: 10.1101/gad.211011.112 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barfeld SJ, East P, Zuber V, Mills IG (2014) Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genomics 7(1):513. doi: 10.1186/s12920-014-0074-9 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berg KD, Vainer B, Thomsen FB, Roder MA, Gerds TA, Toft BG et al (2014) ERG protein expression in diagnostic specimens is associated with increased risk of progression during active surveillance for prostate cancer. Eur Urol 66(5):851–860. doi: 10.1016/j.eururo.2014.02.058 PubMedCrossRefGoogle Scholar
  9. Bettendorf O, Schmidt H, Staebler A, Grobholz R, Heinecke A, Boecker W et al (2008) Chromosomal imbalances, loss of heterozygosity, and immunohistochemical expression of TP53, RB1, and PTEN in intraductal cancer, intraepithelial neoplasia, and invasive adenocarcinoma of the prostate. Genes Chromosomes Cancer 47(7):565–572PubMedCrossRefGoogle Scholar
  10. Bismar TA, Yoshimoto M, Vollmer RT, Duan Q, Firszt M, Corcos J et al (2011) PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. BJU Int 107(3):477–485. doi: 10.1111/j.1464-410X.2010.09470.x PubMedCrossRefGoogle Scholar
  11. Bismar TA, Yoshimoto M, Duan Q, Liu S, Sircar K, Squire JA (2012a) Interactions and relationships of PTEN, ERG, SPINK1 and AR in castration-resistant prostate cancer. Histopathology 60(4):645–652. doi: 10.1111/j.1365-2559.2011.04116.x PubMedCrossRefGoogle Scholar
  12. Bismar TA, Dolph M, Teng LH, Liu S, Donnelly B (2012b) ERG protein expression reflects hormonal treatment response and is associated with Gleason score and prostate cancer specific mortality. Eur J Cancer 48(4):538–546. doi: 10.1016/j.ejca.2012.01.001 PubMedCrossRefGoogle Scholar
  13. Bismar TA, Alshalalfa M, Petersen LF, Teng LH, Gerke T, Bakkar A et al (2014) Interrogation of ERG gene rearrangements in prostate cancer identifies a prognostic 10-gene signature with relevant implication to patients’ clinical outcome. BJU Int 113(2):309–319. doi: 10.1111/bju.12262 PubMedCrossRefGoogle Scholar
  14. Boormans JL, Hermans KG, Made AC, van Leenders GJ, Wildhagen MF, Collette L et al (2010) Expression of the androgen-regulated fusion gene TMPRSS2-ERG does not predict response to endocrine treatment in hormone-naive, node-positive prostate cancer. Eur Urol 57(5):830–835. doi: 10.1016/j.eururo.2009.08.013 PubMedCrossRefGoogle Scholar
  15. Brase JC, Johannes M, Mannsperger H, Falth M, Metzger J, Kacprzyk LA et al (2011) TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-beta signaling. BMC Cancer 11:507. doi: 10.1186/1471-2407-11-507 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA et al (2011) Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19(5):664–678. doi: 10.1016/j.ccr.2011.04.010 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burdova A, Bouchal J, Tavandzis S, Kolar Z (2014) TMPRSS2-ERG gene fusion in prostate cancer. Biomed Pap 158(4):502–510. doi: 10.5507/bp.2014.065 Google Scholar
  18. Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A et al (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41(5):619–624. doi: 10.1038/ng.370 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chaux A, Albadine R, Toubaji A, Hicks J, Meeker A, Platz EA et al (2011) Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 35(7):1014–1020. doi: 10.1097/PAS.0b013e31821e8761 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen H, Nandi AK, Li X, Bieberich CJ (2002) NKX-3.1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter. Cancer Res 62(2):338–340PubMedGoogle Scholar
  21. Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS et al (2007) Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene 26(18):2667–2673. doi: 10.1038/sj.onc.1210070 PubMedCrossRefGoogle Scholar
  22. Dal Pra A, Lalonde E, Sykes J, Warde F, Ishkanian A, Meng A et al (2013) TMPRSS2-ERG status is not prognostic following prostate cancer radiotherapy: implications for fusion status and DSB repair. Clin Cancer Res 19(18):5202–5209. doi: 10.1158/1078-0432.CCR-13-1049 PubMedCrossRefGoogle Scholar
  23. Darnel AD, Lafargue CJ, Vollmer RT, Corcos J, Bismar TA (2009) TMPRSS2-ERG fusion is frequently observed in Gleason pattern 3 prostate cancer in a Canadian cohort. Cancer Biol Ther 8(2):125–130PubMedCrossRefGoogle Scholar
  24. Dasgupta S, Srinidhi S, Vishwanatha JK (2012) Oncogenic activation in prostate cancer progression and metastasis: molecular insights and future challenges. J Carcinog 11:4. doi: 10.4103/1477-3163.93001 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR et al (2007) TMPRSS2: ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26(31):4596–4599. doi: 10.1038/sj.onc.1210237 PubMedCrossRefGoogle Scholar
  26. Denmeade SR, Isaacs JT (2002) A history of prostate cancer treatment. Nat Rev Cancer 2(5):389–396. doi: 10.1038/nrc801 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Draisma G, Etzioni R, Tsodikov A, Mariotto A, Wever E, Gulati R et al (2009) Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst 101(6):374–383. doi: 10.1093/jnci/djp001 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Duterque-Coquillaud M, Niel C, Plaza S, Stehelin D (1993) New human erg isoforms generated by alternative splicing are transcriptional activators. Oncogene 8(7):1865–1873PubMedGoogle Scholar
  29. Falzarano SM, Navas M, Simmerman K, Klein EA, Rubin MA, Zhou M et al (2010) ERG rearrangement is present in a subset of transition zone prostatic tumors. Mod Pathol 23(11):1499–1506. doi: 10.1038/modpathol.2010.150 PubMedCrossRefGoogle Scholar
  30. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1(1):34–45. doi: 10.1038/35094009 PubMedCrossRefGoogle Scholar
  31. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. doi: 10.1016/j.ejca.2012.12.027 PubMedCrossRefGoogle Scholar
  32. Fontugne J, Lee D, Cantaloni C, Barbieri CE, Caffo O, Hanspeter E et al (2014) Recurrent prostate cancer genomic alterations predict response to brachytherapy treatment. Cancer Epidemiol Biomarkers Prev 23(4):594–600. doi: 10.1158/1055-9965.EPI-13-1180 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Franco OE, Hayward SW (2012) Targeting the tumor stroma as a novel therapeutic approach for prostate cancer. Adv Pharmacol 65:267–313. doi: 10.1016/B978-0-12-397927-8.00009-9 PubMedCrossRefGoogle Scholar
  34. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA et al (2010) ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 13(3):228–237. doi: 10.1038/pcan.2010.23 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gasi Tandefelt D, Boormans JL, van der Korput HA, Jenster GW, Trapman J (2013) A 36-gene signature predicts clinical progression in a subgroup of ERG-positive prostate cancers. Eur Urol 64(6):941–950. doi: 10.1016/j.eururo.2013.02.039 PubMedCrossRefGoogle Scholar
  36. Gordanpour A, Stanimirovic A, Nam RK, Moreno CS, Sherman C, Sugar L et al (2011) miR-221 is down-regulated in TMPRSS2: ERG fusion-positive prostate cancer. Anticancer Res 31(2):403–410PubMedPubMedCentralGoogle Scholar
  37. Grupp K, Kohl S, Sirma H, Simon R, Steurer S, Becker A et al (2013a) Cysteine-rich secretory protein 3 overexpression is linked to a subset of PTEN-deleted ERG fusion-positive prostate cancers with early biochemical recurrence. Mod Pathol 26(5):733–742. doi: 10.1038/modpathol.2012.206 PubMedCrossRefGoogle Scholar
  38. Grupp K, Diebel F, Sirma H, Simon R, Breitmeyer K, Steurer S et al (2013b) SPINK1 expression is tightly linked to 6q15- and 5q21-deleted ERG-fusion negative prostate cancers but unrelated to PSA recurrence. Prostate 73(15):1690–1698. doi: 10.1002/pros.22707 PubMedGoogle Scholar
  39. Guo CC, Dancer JY, Wang Y, Aparicio A, Navone NM, Troncoso P et al (2011) TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol 42(1):11–17. doi: 10.1016/j.humpath.2010.05.026 PubMedCrossRefGoogle Scholar
  40. Hagglof C, Hammarsten P, Stromvall K, Egevad L, Josefsson A, Stattin P et al (2014) TMPRSS2-ERG expression predicts prostate cancer survival and associates with stromal biomarkers. PLoS One 9(2):e86824. doi: 10.1371/journal.pone.0086824 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR et al (2008) Characterization of TMPRSS2:ETV5 and SLC45A3: ETV5 gene fusions in prostate cancer. Cancer Res 68(1):73–80PubMedCrossRefGoogle Scholar
  42. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J (2006) TMPRSS2: ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66(22):10658–10663. doi: 10.1158/0008-5472.CAN-06-1871 PubMedCrossRefGoogle Scholar
  43. Hermans KG, van der Korput HA, van Marion R, van de Wijngaart DJ, Ziel-van der Made A, Dits NF et al (2008) Truncated ETV1, fused to novel tissue-specific genes, and full-length ETV1 in prostate cancer. Cancer Res 68(18):7541–7549. doi: 10.1158/0008-5472.CAN-07-5930 PubMedCrossRefGoogle Scholar
  44. Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471. doi: 10.1146/annurev.biochem.79.081507.103945 PubMedCrossRefGoogle Scholar
  45. Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ et al (2012) ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol 25(3):471–479. doi: 10.1038/modpathol.2011.176 PubMedCrossRefGoogle Scholar
  46. Huang KC, Dolph M, Donnelly B, Bismar TA (2014) ERG expression is associated with increased risk of biochemical relapse following radical prostatectomy in early onset prostate cancer. Clin Transl Oncol 16(11):973–979. doi: 10.1007/s12094-014-1182-x PubMedCrossRefGoogle Scholar
  47. Iljin K, Wolf M, Edgren H, Gupta S, Kilpinen S, Skotheim RI et al (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66(21):10242–10246PubMedCrossRefGoogle Scholar
  48. Kanazawa T, Ogawa C, Taketani T, Taki T, Hayashi Y, Morikawa A (2005) TLS/FUS-ERG fusion gene in acute lymphoblastic leukemia with t(16;21)(p11;q22) and monitoring of minimal residual disease. Leuk Lymphoma 46(12):1833–1835. doi: 10.1080/10428190500162203 PubMedCrossRefGoogle Scholar
  49. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4):437–443. doi: 10.1038/86507 PubMedCrossRefGoogle Scholar
  50. King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH et al (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41(5):524–526PubMedPubMedCentralCrossRefGoogle Scholar
  51. Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD et al (2008) A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 105(6):2105–2110. doi: 10.1073/pnas.0711711105 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kron K, Trudel D, Pethe V, Briollais L, Fleshner N, van der Kwast T et al (2013) Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer. Clin Cancer Res 19(13):3450–3461. doi: 10.1158/1078-0432.CCR-12-3139 PubMedCrossRefGoogle Scholar
  53. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8(7):497–511. doi: 10.1038/nrc2402 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lee SL, Yu D, Wang C, Saba R, Liu S, Trpkov K et al (2014) ERG expression in prostate needle biopsy: potential diagnostic and prognostic implications. Appl Immunohistochem Mol Morphol. doi: 10.1097/PAI.0000000000000119 PubMedGoogle Scholar
  55. Lee SL, Yu D, Wang C, Saba R, Liu S, Trpkov K et al (2015) ERG expression in prostate needle biopsy: potential diagnostic and prognostic implications. Appl Immunohistochem Mol Morphol 23(7):499–505. doi: 10.1097/PAI.0000000000000119 PubMedCrossRefGoogle Scholar
  56. Leinonen KA, Tolonen TT, Bracken H, Stenman UH, Tammela TL, Saramaki OR et al (2010) Association of SPINK1 expression and TMPRSS2: ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 16(10):2845–2851. doi: 10.1158/1078-0432.CCR-09-2505 PubMedCrossRefGoogle Scholar
  57. Leinonen KA, Saramäki OR, Furusato B, Kimura T, Takahashi H, Egawa S et al (2013) Loss of PTEN is associated with aggressive behavior in ERG-positive prostate cancer. Cancer Epidemiol Biomarkers Prev 22(12):2333–2344. doi: 10.1158/1055-9965.epi-13-0333-t PubMedPubMedCentralCrossRefGoogle Scholar
  58. Leyten GH, Hessels D, Jannink SA, Smit FP, de Jong H, Cornel EB et al (2014) Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 65(3):534–542. doi: 10.1016/j.eururo.2012.11.014 PubMedCrossRefGoogle Scholar
  59. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947PubMedCrossRefGoogle Scholar
  60. Liu S, Yoshimoto M, Trpkov K, Duan Q, Firszt M, Corcos J et al (2011) Detection of ERG gene rearrangements and PTEN deletions in unsuspected prostate cancer of the transition zone. Cancer Biol Ther 11(6):562–566PubMedCrossRefGoogle Scholar
  61. Locke JA, Zafarana G, Ishkanian AS, Milosevic M, Thoms J, Have CL et al (2012) NKX3.1 haploinsufficiency is prognostic for prostate cancer relapse following surgery or image-guided radiotherapy. Clin Cancer Res 18(1):308–316. doi: 10.1158/1078-0432.CCR-11-2147 PubMedCrossRefGoogle Scholar
  62. Lotan TL, Gupta NS, Wang W, Toubaji A, Haffner MC, Chaux A et al (2011) ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 24(6):820–828. doi: 10.1038/modpathol.2011.7 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Loughran SJ, Kruse EA, Hacking DF, de Graaf CA, Hyland CD, Willson TA et al (2008) The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 9(7):810–819. doi: 10.1038/ni.1617 PubMedCrossRefGoogle Scholar
  64. Mahdian R, Nodouzi V, Asgari M, Rezaie M, Alizadeh J, Yousefi B et al (2014) Expression profile of MAGI2 gene as a novel biomarker in combination with major deregulated genes in prostate cancer. Mol Biol Rep 41(9):6125–6131. doi: 10.1007/s11033-014-3491-0 PubMedCrossRefGoogle Scholar
  65. Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326(5957):1230. doi: 10.1126/science.1178124 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, Wei JT et al (2007) Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol 20(5):538–544. doi: 10.1038/modpathol.3800769 PubMedCrossRefGoogle Scholar
  67. Mertz KD, Setlur SR, Dhanasekaran SM, Demichelis F, Perner S, Tomlins S et al (2007) Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 9(3):200–206PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A, Srivastava S et al (2011) ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol 35(3):432–441. doi: 10.1097/PAS.0b013e318206b67b PubMedCrossRefGoogle Scholar
  69. Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS et al (2011) ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin Cancer Res 17(18):5878–5888. doi: 10.1158/1078-0432.CCR-11-1251 PubMedCrossRefGoogle Scholar
  70. Mochmann LH, Neumann M, von der Heide EK, Nowak V, Kuhl AA, Ortiz-Tanchez J et al (2014) ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells. Oncotarget 5(2):351–362PubMedCrossRefGoogle Scholar
  71. Mohamed AA, Tan SH, Sun C, Shaheduzzaman S, Hu Y, Petrovics G et al (2011) ERG oncogene modulates prostaglandin signaling in prostate cancer cells. Cancer Biol Ther 11(4):410–417PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mosquera JM, Perner S, Genega EM, Sanda M, Hofer MD, Mertz KD et al (2008) Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin Cancer Res 14(11):3380–3385. doi: 10.1158/1078-0432.CCR-07-5194 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764. doi: 10.1038/nature05690 PubMedCrossRefGoogle Scholar
  74. Nagle RB, Algotar AM, Cortez CC, Smith K, Jones C, Sathyanarayana UG et al (2013) ERG overexpression and PTEN status predict capsular penetration in prostate carcinoma. Prostate 73(11):1233–1240. doi: 10.1002/pros.22675 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH et al (2007a) Expression of TMPRSS2: ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther 6(1):40–45PubMedCrossRefGoogle Scholar
  76. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY et al (2007b) Expression of the TMPRSS2: ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97(12):1690–1695PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ng HH, Bird A (2000) Histone deacetylases: silencers for hire. Trends Biochem Sci 25(3):121–126PubMedCrossRefGoogle Scholar
  78. Oh SH, Park TS, Choi JR, Lee S, Cho SY, Kim SY et al (2010) Two childhood cases of acute leukemia with t(16;21)(p11.2;q22): second case report of infantile acute lymphoblastic leukemia with unusual type of FUS-ERG chimeric transcript. Cancer Genet Cytogenet 200(2):180–183. doi: 10.1016/j.cancergencyto.2010.04.009 PubMedCrossRefGoogle Scholar
  79. Owczarek CM, Portbury KJ, Hardy MP, O’Leary DA, Kudoh J, Shibuya K et al (2004) Detailed mapping of the ERG–ETS2 interval of human chromosome 21 and comparison with the region of conserved synteny on mouse chromosome 16. Gene 324:65–77PubMedCrossRefGoogle Scholar
  80. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R et al (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12(7):590–598PubMedPubMedCentralCrossRefGoogle Scholar
  81. Park K, Dalton JT, Narayanan R, Barbieri CE, Hancock ML, Bostwick DG et al (2014) TMPRSS2: ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol 32(3):206–211. doi: 10.1200/JCO.2013.49.8386 PubMedCrossRefGoogle Scholar
  82. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S et al (2006) TMPRSS2: ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66(17):8337–8341PubMedCrossRefGoogle Scholar
  83. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y et al (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24(23):3847–3852. doi: 10.1038/sj.onc.1208518 PubMedCrossRefGoogle Scholar
  84. Pflueger D, Rickman DS, Sboner A, Perner S, LaFargue CJ, Svensson MA et al (2009) N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia 11(8):804–811PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rajan P, Stockley J, Sudbery IM, Fleming JT, Hedley A, Kalna G et al (2014) Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer 14:977. doi: 10.1186/1471-2407-14-977 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rao VN, Papas TS, Reddy ES (1987) erg, a human ets-related gene on chromosome 21: alternative splicing, polyadenylation, and translation. Science 237(4815):635–639PubMedCrossRefGoogle Scholar
  87. Rao VN, Modi WS, Drabkin HD, Patterson D, O’Brien SJ, Papas TS et al (1988) The human erg gene maps to chromosome 21, band q22: relationship to the 8; 21 translocation of acute myelogenous leukemia. Oncogene 3(5):497–500PubMedGoogle Scholar
  88. Reddy ES, Rao VN, Papas TS (1987) The erg gene: a human gene related to the ets oncogene. Proc Natl Acad Sci U S A 84(17):6131–6135PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ribeiro FR, Paulo P, Costa VL, Barros-Silva JD, Ramalho-Carvalho J, Jeronimo C et al (2011) Cysteine-rich secretory protein-3 (CRISP3) is strongly up-regulated in prostate carcinomas with the TMPRSS2-ERG fusion gene. PLoS One 6(7):e22317. doi: 10.1371/journal.pone.0022317 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25. doi: 10.1016/j.molonc.2007.01.001 PubMedCrossRefGoogle Scholar
  91. Ross LE, Berkowitz Z, Ekwueme DU (2008) Use of the prostate-specific antigen test among U.S. men: findings from the 2005 National Health Interview Survey. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology 17(3):636–644. doi: 10.1158/1055-9965.EPI-07-2709 Google Scholar
  92. Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S et al (2008) Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst 100(11):815–825. doi: 10.1093/jnci/djn150 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shah RB (2013) Clinical applications of novel ERG immunohistochemistry in prostate cancer diagnosis and management. Adv Anat Pathol 20(2):117–124. doi: 10.1097/PAP.0b013e3182862ac5 PubMedCrossRefGoogle Scholar
  94. Shah RB, Tadros Y, Brummell B, Zhou M (2013) The diagnostic use of ERG in resolving an “atypical glands suspicious for cancer” diagnosis in prostate biopsies beyond that provided by basal cell and alpha-methylacyl-CoA-racemase markers. Hum Pathol 44(5):786–794. doi: 10.1016/j.humpath.2012.06.024 PubMedCrossRefGoogle Scholar
  95. Sharrocks AD (2001) The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2(11):827–837. doi: 10.1038/35099076 PubMedCrossRefGoogle Scholar
  96. Shimizu K, Ichikawa H, Tojo A, Kaneko Y, Maseki N, Hayashi Y et al (1993) An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc Natl Acad Sci U S A 90(21):10280–10284PubMedPubMedCentralCrossRefGoogle Scholar
  97. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. doi: 10.3322/caac.21166 PubMedCrossRefGoogle Scholar
  98. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. doi: 10.3322/caac.21254 PubMedCrossRefGoogle Scholar
  99. Slovin SF, Kelly WK, Wilton A, Kattan M, Myskowski P, Mendelsohn J et al (2009) Anti-epidermal growth factor receptor monoclonal antibody cetuximab plus Doxorubicin in the treatment of metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 7(3):E77–E82. doi: 10.3816/CGC.2009.n.028 PubMedCrossRefGoogle Scholar
  100. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 6(2):146–151. doi: 10.1038/ng0294-146 PubMedCrossRefGoogle Scholar
  101. Spencer ES, Johnston RB, Gordon RR, Lucas JM, Ussakli CH, Hurtado-Coll A et al (2013) Prognostic value of ERG oncoprotein in prostate cancer recurrence and cause-specific mortality. Prostate 73(9):905–912. doi: 10.1002/pros.22636 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Steurer S, Mayer PS, Adam M, Krohn A, Koop C, Ospina-Klinck D et al (2014) TMPRSS2-ERG fusions are strongly linked to young patient age in low-grade prostate cancer. Eur Urol 66(6):978–981. doi: 10.1016/j.eururo.2014.06.027 PubMedCrossRefGoogle Scholar
  103. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B et al (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27(40):5348–5353. doi: 10.1038/onc.2008.183 PubMedCrossRefGoogle Scholar
  104. Svensson MA, Perner S, Ohlson AL, Day JR, Groskopf J, Kirsten R et al (2014) A comparative study of ERG status assessment on DNA, mRNA, and protein levels using unique samples from a Swedish biopsy cohort. Appl Immunohistochem Mol Morphol 22(2):136–141. doi: 10.1097/PDM.0b013e31829e0484 PubMedCrossRefGoogle Scholar
  105. Teng LH, Wang C, Dolph M, Donnelly B, Bismar TA (2013) ERG protein expression is of limited prognostic value in men with localized prostate cancer. ISRN Urol 2013:786545. doi: 10.1155/2013/786545 PubMedPubMedCentralGoogle Scholar
  106. Terry S, Nicolaiew N, Basset V, Semprez F, Soyeux P, Maille P et al (2015) Clinical value of ERG, TFF3, and SPINK1 for molecular subtyping of prostate cancer. Cancer. doi: 10.1002/cncr.29233 Google Scholar
  107. Thangapazham R, Saenz F, Katta S, Mohamed AA, Tan SH, Petrovics G et al (2014) Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer. BMC Cancer 14:16. doi: 10.1186/1471-2407-14-16 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tian TV, Tomavo N, Huot L, Flourens A, Bonnelye E, Flajollet S et al (2014) Identification of novel TMPRSS2: ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 33(17):2204–2214. doi: 10.1038/onc.2013.176 PubMedCrossRefGoogle Scholar
  109. Tidehag V, Hammarsten P, Egevad L, Granfors T, Stattin P, Leanderson T et al (2014) High density of S100A9 positive inflammatory cells in prostate cancer stroma is associated with poor outcome. Eur J Cancer 50(10):1829–1835. doi: 10.1016/j.ejca.2014.03.278 PubMedCrossRefGoogle Scholar
  110. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648PubMedCrossRefGoogle Scholar
  111. Tomlins SA, Alshalalfa M, Davicioni E, Erho N, Yousefi K, Zhao S et al (2015a) Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes. Eur Urol 68(4):555–567. doi: 10.1016/j.eururo.2015.04.033 PubMedCrossRefGoogle Scholar
  112. Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP et al (2015b) Urine TMPRSS2: ERG plus PCA3 for individualized prostate cancer risk assessment. Eur Urol. doi: 10.1016/j.eururo.2015.04.039 Google Scholar
  113. Toubaji A, Albadine R, Meeker AK, Isaacs WB, Lotan T, Haffner MC et al (2011) Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas. Mod Pathol 24(11):1511–1520. doi: 10.1038/modpathol.2011.111 PubMedPubMedCentralCrossRefGoogle Scholar
  114. van Leenders GJ, Boormans JL, Vissers CJ, Hoogland AM, Bressers AA, Furusato B et al (2011) Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 24(8):1128–1138. doi: 10.1038/modpathol.2011.65 PubMedCrossRefGoogle Scholar
  115. Wang J, Cai Y, Ren C, Ittmann M (2006) Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66(17):8347–8351. doi: 10.1158/0008-5472.CAN-06-1966 PubMedCrossRefGoogle Scholar
  116. Wang J, Cai Y, Yu W, Ren C, Spencer DM, Ittmann M (2008) Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res 68(20):8516–8524. doi: 10.1158/0008-5472.CAN-08-1147 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang JJ, Liu YX, Wang W, Yan W, Zheng YP, Qiao LD et al (2012) Fusion between TMPRSS2 and ETS family members (ERG, ETV1, ETV4) in prostate cancers from northern China. Asian Pac J Cancer Prev 13(10):4935–4938PubMedCrossRefGoogle Scholar
  118. Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J et al (2005) The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388(Pt 3):967–972. doi: 10.1042/BJ20041066 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yaskiv O, Zhang X, Simmerman K, Daly T, He H, Falzarano S et al (2011) The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsies. Am J Surg Pathol 35(7):1062–1068. doi: 10.1097/PAS.0b013e318215cc03 PubMedCrossRefGoogle Scholar
  120. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O et al (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21(12):1451–1460. doi: 10.1038/modpathol.2008.96 PubMedCrossRefGoogle Scholar
  121. Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17(5):443–454. doi: 10.1016/j.ccr.2010.03.018 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hatem Abou-Ouf
    • 1
    • 3
  • Liena Zhao
    • 1
  • Tarek A. Bismar
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Calgary and Calgary Laboratory ServicesCalgaryCanada
  2. 2.Departments of Oncology, Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada
  3. 3.Arnie Charbonneau Cancer Institute and Tom Baker Cancer CenterCalgaryCanada

Personalised recommendations