The role of stress and beta-adrenergic system in melanoma: current knowledge and possible therapeutic options

  • Roberta Colucci
  • Silvia Moretti
Review – Clinical Oncology



The aim of the present review was to discuss recent findings on the role of beta-adrenergic system in melanoma, in order to provide information on the biological responses elicited by its activation and its potential application for melanoma treatment.


A literature search was performed, and evidences regarding the involvement of stress and beta-adrenergic system in cancer and melanoma were found and discussed.


Our search pointed out that beta-adrenergic system is a key regulator of important biological processes involved in the onset and progression of some solid tumors. In the last decade, functional beta-adrenoceptors have been also identified on melanoma cells, as well as on their microenvironment cells. Similarly to other common cancers too, the activation of such adrenoceptors by catecholamines, usually released under stress conditions, has been found to trigger pro-tumorigenic pathways contributing to cell proliferation and motility, immune system regulation, apoptosis, epithelial–mesenchymal transition, invasion and neoangiogenesis.


The biological evidences we found clarify and sustain the clinical evidences reporting the involvement of chronic stress in melanoma onset and progression. In such scenario, it is conceivable that a therapeutic approach targeting beta-adrenergic system could constitute a novel and promising strategy for melanoma treatment.


Melanoma Beta-adrenergic system Beta-adrenergic receptors Catecholamines Stress Beta-blockers 



This manuscript did not receive any specific grant; thus, it was not funded.

Compliance with ethical standards

Conflict of interest

Dr. Roberta Colucci declares that she has no conflict of interest. Prof. Silvia Moretti declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ahles A, Engelhardt S (2014) Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease. Pharmacol Rev 66:598–637CrossRefPubMedGoogle Scholar
  2. Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM, Shine D, Kadmon D, Thompson T, Miles BJ, Ittmann MM, Rowley D (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14:7593–7603CrossRefPubMedGoogle Scholar
  3. Azoury SC, Lange JR (2014) Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am 94:945–962CrossRefPubMedGoogle Scholar
  4. Beswick S, Affleck P, Elliott F, Gerry E, Boon A, Bale L, Nolan C, Barrett JH, Bertram C, Marsden J, Bishop DT, Newton-Bishop JA (2008) Environmental risk factors for relapse of melanoma. Eur J Cancer 44:1717–1725CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bethin KE, Vogt SK, Muglia LJ (2000) Interleukin-6 is an essential, corticotrophin releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci USA 97:9317–9322CrossRefPubMedPubMedCentralGoogle Scholar
  6. Butow P, Coates A, Dunn S (1999) Psychosocial predictors of survival in metastatic melanoma. J Clin Oncol 17:2256–2263PubMedGoogle Scholar
  7. Cacho Fernández R, Garmendia Rezola L, Vegas Moreno O, Azpíroz Sánchez A (2008) Effects of social stress on tumor development in dominant male mice with diverse behavioral activity profiles. Psicothema 20:818–824PubMedGoogle Scholar
  8. Calvani M, Pelon F, Comito G, Taddei ML, Moretti S, Innocenti S, Nassini R, Gerlini G, Borgognoni L, Bambi F, Giannoni E, Filippi L, Chiarugi P (2015) Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoceptors during melanoma progression. Oncotarget 6:4615–4632CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chedotal A (2007) Chemotropic axon guidance molecules in tumorigenesis. Prog Exp Tumor Res 39:78–90CrossRefPubMedGoogle Scholar
  10. Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208CrossRefPubMedGoogle Scholar
  11. Dal Monte M, Casini G, Filippi L, Nicchia GP, Svelto M, Bagnoli P (2013) Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. J Mol Med 91:1407–1419CrossRefPubMedGoogle Scholar
  12. De Giorgi V, Grazzini M, Gandini S, Benemei S, Lotti T, Marchionni N, Geppetti P (2011) Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 171:779–781PubMedGoogle Scholar
  13. De Giorgi V, Gandini S, Grazzini M, Benemei S, Marchionni N, Geppetti P (2013) Effect of β-blockers and other antihypertensive drugs on the risk of melanoma recurrence and death. Mayo Clin Proc 88:1196–1203CrossRefPubMedGoogle Scholar
  14. Deng GH, Liu J, Zhang J, Wang Y, Peng XC, Wei YQ, Jiang Y (2014) Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J Exp Clin Cancer Res 20(33):21CrossRefGoogle Scholar
  15. Dolle JP, Rezvan A, Allen FD, Lazarovici P, Lelkes PI (2005) Nerve growth factor-induced migration of endothelial cells. J Pharmacol Exp Ther 315:1220–1227CrossRefPubMedGoogle Scholar
  16. Entschladen F, Palm D, Niggemann B, Zaenker KS (2008) The cancer’s nervous tooth: considering the neuronal crosstalk within tumors. Semin Cancer Biol 18:171–175CrossRefPubMedGoogle Scholar
  17. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181CrossRefPubMedGoogle Scholar
  18. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337CrossRefPubMedGoogle Scholar
  19. Fawzy FI, Kemeny ME, Fawzy NW, Elashoff R, Morton D, Cousins N, Fahey JL (1990) A structured psychiatric intervention for cancer patients. II. Changes over time in immunological measures. Arch Gen Psychiatry 47:729–735CrossRefPubMedGoogle Scholar
  20. Fawzy F, Fawzy N, Hyun C, Elashoff R, Guthrie D, Fahey JL, Morton DL (1993) Malignant melanoma: effects of an early structured psychiatric intervention, coping, and affective state on recurrence and survival 6 years later. Arch Gen Psychiatry 50:681–689CrossRefPubMedGoogle Scholar
  21. Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU (2004) Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 123:346–353CrossRefPubMedGoogle Scholar
  22. Goldstein DS (2010) Adrenal responses to stress. Cell Mol Neurobiol 30:1433–1440CrossRefPubMedPubMedCentralGoogle Scholar
  23. Helfand M, Peterson K, Christensen V, Dana T, Thakurta S (2009) Drug class review: beta adrenergic blockers: final report update 4 [Internet]. Drug class reviews. Oregon Health & Science University, PortlandGoogle Scholar
  24. Kasparian NA (2013) Psychological care for people with melanoma: what, when, why and how? Semin Oncol Nurs 29:214–222CrossRefPubMedGoogle Scholar
  25. Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J (2014) The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int 16(14):41CrossRefGoogle Scholar
  26. Kirstein SL, Insel PA (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev 56:31–52CrossRefPubMedGoogle Scholar
  27. Kobilka BK (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci 32:213–218CrossRefPubMedPubMedCentralGoogle Scholar
  28. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lehto U-S, Ojanen M, Dyba T, Aromaa A, Kellokumpu-Lehtinen P (2007) Baseline psychosocial predictors of survival in localized melanoma. J Psychosom Res 63:9–15CrossRefPubMedGoogle Scholar
  30. Lemeshow S, Sørensen HT, Phillips G, Yang EV, Antonsen S, Riis AH, Lesinski GB, Jackson R, Glaser R (2011) β-Blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 20:2273–2279CrossRefPubMedPubMedCentralGoogle Scholar
  31. Livingstone E, Hollestein LM, van Herk-Sukel MP, van de Poll-Franse L, Nijsten T, Schadendorf D, de Vries E (2013) β-Blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur J Cancer 49:3863–3871CrossRefPubMedGoogle Scholar
  32. Lu SH, Zhou Y, Que HP, Liu SJ (2003) Peptidergic innervation of human esophageal and cardiac carcinoma. World J Gastroenterol 9:399–403CrossRefPubMedPubMedCentralGoogle Scholar
  33. Magnoni C, Giudice S, Pellacani G, Bertazzoni G, Longo C, Veratti E, Morini D, Benassi L, Vaschieri C, Azzoni P, De Pol A, Seidenari S, Tomasi A, Pollio A, Ponti G (2014) Stem cell properties in cell cultures from different stage of melanoma progression. Appl Immunohistochem Mol Morphol 22:171–181CrossRefPubMedGoogle Scholar
  34. Maverakis E, Cornelius LA, Bowen GM, Phan T, Patel FB, Fitzmaurice S, He Y, Burrall B, Duong C, Kloxin AM, Sultani H, Wilken R, Martinez SR, Patel F (2015) Metastatic melanoma—a review of current and future treatment options. Acta Derm Venereol 95:516–524CrossRefPubMedGoogle Scholar
  35. McCourt C, Coleman HG, Murray LJ, Cantwell MM, Dolan O, Powe DG, Cardwell CR (2014) Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case–control study. Br J Dermatol 170:930–938CrossRefPubMedGoogle Scholar
  36. Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477CrossRefPubMedGoogle Scholar
  37. Montgomery JP, Patterson PH (2006) Behavioral stress and tumor progression. Anticancer Res 26:1189–1192PubMedGoogle Scholar
  38. Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P (2013) β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest 93:279–290CrossRefPubMedGoogle Scholar
  39. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA, Benezra R, Mittal V (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558CrossRefPubMedPubMedCentralGoogle Scholar
  40. Quốc Lu’o’ng KV, Nguyễn LT (2012) The roles of beta-adrenergic receptors in tumorigenesis and the possible use of beta-adrenergic blockers for cancer treatment: possible genetic and cell-signaling mechanisms. Cancer Manag Res 4:431–445PubMedPubMedCentralGoogle Scholar
  41. Ragan AR, Lesniak A, Bochynska-Czyz M, Kosson A, Szymanska H, Pysniak K, Gajewska M, Lipkowski AW, Sacharczuk M (2013) Chronic mild stress facilitates melanoma tumor growth in mouse lines selected for high and low stress-induced analgesia. Stress 16:571–580CrossRefPubMedGoogle Scholar
  42. Sacharczuk M, Jaszczak K, Sadowski B (2003) Cytogenetic comparison of the sensitivity to mutagens in mice selected for high (HA) and low (LA) swim stress-induced analgesia. Mutat Res 535:95–102CrossRefPubMedGoogle Scholar
  43. Sacharczuk M, Lesniak A, Korostynski M, Przewlocki R, Lipkowski A, Jaszczak K, Sadowski B (2010) A polymorphism in exon 2 of the delta-opioid receptor affects nociception in response to specific agonists and antagonists in mice selectively bred for high and low analgesia. Pain 149:506–513CrossRefPubMedGoogle Scholar
  44. Schallreuter KU, Wood JM, Lemke R, LePoole C, Das P, Westerhof W, Pittelkow MR, Thody AJ (1992) Production of catecholamines in the human epidermis. Biochem Biophys Res Commun 189:72–78CrossRefPubMedGoogle Scholar
  45. Schatton T, Frank MH (2010) The in vitro spheroid melanoma cell culture assay: cues on tumor initiation? J Invest Dermatol 130:1769–1771CrossRefPubMedPubMedCentralGoogle Scholar
  46. Seifert P, Spitznas M (2002) Axons in human choroidal melanoma suggest the participation of nerves in the control of these tumors. Am J Ophthalmol 133:711–713CrossRefPubMedGoogle Scholar
  47. Sinnya S, De’Ambrosis B (2013) Stress and melanoma: increasing the evidence towards a causal basis. Arch Dermatol Res 305:851–856CrossRefPubMedGoogle Scholar
  48. Spiegel D (2012) Mind matters in cancer survival. Psychooncology 21:588–593CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tang J, Li Z, Lu L, Cho CH (2013) β-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol 23:533–542CrossRefPubMedGoogle Scholar
  50. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150CrossRefPubMedGoogle Scholar
  51. Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, Obrador E, Estrela JM (2013) Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6- and glutathione-dependent mechanism. J Transl Med 11:72CrossRefPubMedPubMedCentralGoogle Scholar
  52. Valsecchi ME, Sato T (2013) The potential role of sunitinib targeting melanomas. Expert Opin Investig Drugs 22:1473–1483CrossRefPubMedGoogle Scholar
  53. Vegas O, Fano E, Brain PF, Alonso A, Azpiroz A (2006) Social stress, coping strategies and tumor development in male mice: behavioral, neuroendocrine and immunological implications. Psychoneuroendocrinology 31:69–79CrossRefPubMedGoogle Scholar
  54. Voss MJ, Entschladen F (2010) Tumor interactions with soluble factors and the nervous system. Cell Commun Signal 8:21CrossRefPubMedPubMedCentralGoogle Scholar
  55. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741CrossRefPubMedGoogle Scholar
  56. Wrobel LJ, Le Gal FA (2015) Inhibition of human melanoma growth by a non-cardioselective β-blocker. J Invest Dermatol 135:525–531CrossRefPubMedGoogle Scholar
  57. Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH, Glaser R (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang H, Forman HJ, Choi J (2005) Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol 401:468–483CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Section of Dermatology, Department of Surgery and Translational MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations