Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 142, Issue 7, pp 1395–1406 | Cite as

Membrane microparticles: shedding new light into cancer cell communication

  • Paloma Silva de Souza
  • Roberta Soares Faccion
  • Paula Sabbo Bernardo
  • Raquel Ciuvalschi MaiaEmail author
Review – Cancer Research

Abstract

Background

Microparticles (MPs) or ectosomes are small enclosed fragments (from 0.2 to 2 μm in diameter) released from the cellular plasma membrane. Several oncogenic molecules have been identified inside MPs, including soluble proteins XIAP, survivin, metalloproteinases, CX3CL1, PYK2 and other microRNA-related proteins; membrane proteins EGFR, HER-2, integrins and efflux pumps; and messenger RNAs and microRNAs miR-21, miR-27a, let-7, miR-451, among others. Studies have shown that MPs transfer their cargo to neoplastic or non-malignant cells and thus contribute to activation of oncogenic pathways, resulting in cell survival, drug resistance and cancer dissemination.

Discussion and Conclusion

This review summarizes recent findings on MP biogenesis and the role of the MPs cargo in cancer and discusses some of the RNAs and proteins involved. In addition, the discussion covers evidence of (1) how and which signaling pathways can be activated by MPs in recipient cells; (2) recipient cell-type selectivity in incorporation of proteins and RNAs transported by MPs; and (3) how upon stimulation, stromal cells release MPs, promoting resistance to chemotherapeutics and invasiveness in cancer cells.

Keywords

Microparticles Multidrug resistance Cancer Intercellular communication MicroRNAs Akt and ERK signaling pathways 

Notes

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação para Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). PSS and RSF were supported by postdoctoral fellowships from Ministério da Saúde/Instituto Nacional de Câncer. PSB was supported by a “Nota 10” Ph.D. scholarship from (FAPERJ).

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest.

References

  1. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624PubMedCrossRefGoogle Scholar
  2. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106(10):3794–3799PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedCrossRefGoogle Scholar
  4. Antonyak MA et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA 108(12):4852–4857PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arpin M, Chirivino D, Naba A, Zwaenepoel I (2011) Emerging role for ERM proteins in cell adhesion and migration. Cell Adhes Migr 5(2):199–206CrossRefGoogle Scholar
  6. Arroyo JD et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Zembala M (2007) Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett 113(2):76–82PubMedCrossRefGoogle Scholar
  8. Bazan JF et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644PubMedCrossRefGoogle Scholar
  9. Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, Grau GE (2009) Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia 23(9):1643–1649PubMedCrossRefGoogle Scholar
  10. Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8(3):212–226PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brambilla D et al (2012) P-glycoprotein binds to ezrin at amino acid residues 149–242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma. Int J Cancer 130(12):2824–2834PubMedCrossRefGoogle Scholar
  12. Castellana D, Zobairi F, Martinez MC, Panaro MA, Mitolo V, Freyssinet JM, Kunzelmann C (2009) Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1–CX3CR1 axis. Cancer Res 69(3):785–793PubMedCrossRefGoogle Scholar
  13. Chen P, Douglas SD, Meshki J, Tuluc F (2012) Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells. PLoS ONE 7(9):e45322PubMedPubMedCentralCrossRefGoogle Scholar
  14. Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJ, Wiley JS, Sluyter R (2010) P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. Biochim Biophys Acta 1798(9):1797–1804PubMedCrossRefGoogle Scholar
  15. Datta A et al (2015) Selective targeting of FAK-Pyk2 axis by alpha-naphthoflavone abrogates doxorubicin resistance in breast cancer cells. Cancer Lett 362(1):25–35PubMedCrossRefGoogle Scholar
  16. de Souza PS, Cruz AL, Viola JP, Maia RC (2015) Microparticles induce multifactorial resistance through oncogenic pathways independently of cancer cell type. Cancer Sci 106(1):60–68PubMedCrossRefGoogle Scholar
  17. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106(5):1604–1611PubMedCrossRefGoogle Scholar
  18. Donatello S, Babina IS, Hazelwood LD, Hill AD, Nabi IR, Hopkins AM (2012) Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. Am J Pathol 181(6):2172–2187PubMedPubMedCentralCrossRefGoogle Scholar
  19. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358PubMedCrossRefGoogle Scholar
  20. El Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357CrossRefGoogle Scholar
  21. Enjeti AK, Lincz LF, Seldon M (2008) Microparticles in health and disease. Semin Thromb Hemost 34(7):683–691PubMedCrossRefGoogle Scholar
  22. Faccion RS, Rezende LM, Romano Sde O, Bigni Rde S, Mendes GL, Maia RC (2012) Centroblastic diffuse large B cell lymphoma displays distinct expression pattern and prognostic role of apoptosis resistance related proteins. Cancer Invest 30(5):404–414PubMedCrossRefGoogle Scholar
  23. Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5(7):551–562PubMedCrossRefGoogle Scholar
  24. Fan H, Guan JL (2011) Compensatory function of Pyk2 protein in the promotion of focal adhesion kinase (FAK)-null mammary cancer stem cell tumorigenicity and metastatic activity. J Biol Chem 286(21):18573–18582PubMedPubMedCentralCrossRefGoogle Scholar
  25. Feng DD et al (2011) Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 15(10):2164–2175PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fleitas T et al (2012) Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS ONE 7(10):e47365PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fremder E et al (2014) Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin. Int J Cancer 135(2):270–281PubMedCrossRefGoogle Scholar
  28. Fujiwara T, Kunisada T, Takeda K, Uotani K, Yoshida A, Ochiya T, Ozaki T (2014) MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. BioMed Res Int. Article ID 592868Google Scholar
  29. Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124PubMedCrossRefGoogle Scholar
  30. Gan HK, Cvrljevic AN, Johns TG (2013) The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 280(21):5350–5370PubMedCrossRefGoogle Scholar
  31. Geng W et al (2011) The role of proline rich tyrosine kinase 2 (Pyk2) on cisplatin resistance in hepatocellular carcinoma. PLoS ONE 6(11):e27362PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gimba ER, Tilli TM (2013) Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 331(1):11–17PubMedCrossRefGoogle Scholar
  33. Gong J, Luk F, Jaiswal R, Bebawy M (2014) Microparticles mediate the intercellular regulation of microRNA-503 and proline-rich tyrosine kinase 2 to alter the migration and invasion capacity of breast cancer cells. Front Oncol 4:220PubMedPubMedCentralGoogle Scholar
  34. Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M (2015) Microparticles in cancer: a review of recent developments and the potential for clinical application. Semin Cell Dev Biol 40: 35–40PubMedCrossRefGoogle Scholar
  35. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58PubMedCrossRefGoogle Scholar
  36. Hoffmann PR et al (2001) Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J Cell Biol 155(4):649–659PubMedPubMedCentralCrossRefGoogle Scholar
  37. Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F (2013) Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int J Cancer 133(7):1631–1642PubMedCrossRefGoogle Scholar
  38. Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology 20:22–27PubMedCrossRefGoogle Scholar
  39. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506PubMedPubMedCentralCrossRefGoogle Scholar
  40. Inns J, James V (2015) Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease. Breast 24(4):364–369PubMedCrossRefGoogle Scholar
  41. Iqbal N, Iqbal N (2014) Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int 2014:852748PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jackson BL, Grabowska A, Ratan HL (2014) MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer 14:930PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jaiswal R et al (2012a) Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J 26(1):420–429PubMedCrossRefGoogle Scholar
  44. Jaiswal R, Luk F, Gong J, Mathys JM, Grau GE, Bebawy M (2012b) Microparticle conferred microRNA profiles–implications in the transfer and dominance of cancer traits. Mol Cancer 11:37PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M (2013) Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS ONE 8(4):e61515PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610PubMedCrossRefGoogle Scholar
  47. Ji H, Chen M, Greening DW, He W, Rai A, Zhang W, Simpson RJ (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct miRNA-enrichment signatures. PLoS ONE 9(10):e110314PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jouvenet N (2012) Dynamics of ESCRT proteins. Cell Mol Life Sci 69(24):4121–4133PubMedCrossRefGoogle Scholar
  49. Juarez J, Bendall L (2004) SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol 19(1):299–309PubMedGoogle Scholar
  50. Jutten B, Rouschop KM (2014) EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle 13(1):42–51PubMedCrossRefGoogle Scholar
  51. Kahn J et al (2004) Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood 103(8):2942–2949PubMedCrossRefGoogle Scholar
  52. Kalinkovich A et al (2006) Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res 66(22):11013–11020PubMedCrossRefGoogle Scholar
  53. Lam D, Barre B, Guette C, Coqueret O (2013) Circulating miRNAs as new activators of the JAK-STAT3 pathway. JAK-STAT 2(1):e22996PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910PubMedCrossRefGoogle Scholar
  55. Li L et al (2012) Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS ONE 7(10):e46957PubMedPubMedCentralCrossRefGoogle Scholar
  56. Liang Z et al (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79(6):817–824PubMedCrossRefGoogle Scholar
  57. Liebhardt S et al (2010) CEA-, Her2/neu-, BCRP- and Hsp27-positive microparticles in breast cancer patients. Anticancer Res 30(5):1707–1712PubMedGoogle Scholar
  58. Lindner K, Haier J, Wang Z, Watson DI, Hussey DJ, Hummel R (2015) Circulating microRNAs: emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers. Clin Sci 128(1):1–15PubMedCrossRefGoogle Scholar
  59. Liu HS, Xiao HS (2014) MicroRNAs as potential biomarkers for gastric cancer. World J Gastroenterol 20(34):12007–12017PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156PubMedCrossRefGoogle Scholar
  61. Lozito TP, Tuan RS (2014) Endothelial and cancer cells interact with mesenchymal stem cells via both microparticles and secreted factors. J Cell Mol Med 18(12):2372–2384PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lu JF, Luk F, Gong J, Jaiswal R, Grau GE, Bebawy M (2013) Microparticles mediate MRP1 intercellular transfer and the re-templating of intrinsic resistance pathways. Pharmacol Res 76:77–83PubMedCrossRefGoogle Scholar
  63. Luciani F et al (2002) P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin. Blood 99(2):641–648PubMedCrossRefGoogle Scholar
  64. Ma J et al (2013) Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin alpha(M)beta(2) to tumor cells. J Immunol 191(6):3453–3461PubMedCrossRefGoogle Scholar
  65. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057PubMedCrossRefGoogle Scholar
  66. McCullough J, Colf LA, Sundquist WI (2013) Membrane fission reactions of the mammalian ESCRT pathway. Ann Rev Biochem 82:663–692PubMedPubMedCentralCrossRefGoogle Scholar
  67. Meshki J, Douglas SD, Lai JP, Schwartz L, Kilpatrick LE, Tuluc F (2009) Neurokinin 1 receptor mediates membrane blebbing in HEK293 cells through a Rho/Rho-associated coiled-coil kinase-dependent mechanism. J Biol Chem 284(14):9280–9289PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miletti-Gonzalez KE et al (2005) The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res 65(15):6660–6667PubMedCrossRefGoogle Scholar
  69. Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T (2015) Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 147:123–135PubMedCrossRefGoogle Scholar
  70. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439PubMedCrossRefGoogle Scholar
  71. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D’Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885PubMedPubMedCentralCrossRefGoogle Scholar
  72. Park D et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434PubMedCrossRefGoogle Scholar
  73. Pasquier J et al (2014) Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation. Cancer Microenviron 7(1–2):41–59PubMedPubMedCentralCrossRefGoogle Scholar
  74. Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21(3):157–171PubMedCrossRefGoogle Scholar
  75. Pimentel F et al. (2014) Technology in MicroRNA Profiling: Circulating MicroRNAs as Noninvasive Cancer Biomarkers in Breast Cancer. J Lab Autom [Epub ahead of print] Google Scholar
  76. Pokharel D, Padula MP, Lu JF, Tacchi JL, Luk F, Djordjevic SP, Bebawy M (2014) Proteome analysis of multidrug-resistant, breast cancer-derived microparticles. J Extracell Vesicles. doi: 10.3402/jev.v3.24384
  77. Qu Y, Dubyak GR (2009) P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways. Purinergic Signal 5(2):163–173PubMedPubMedCentralCrossRefGoogle Scholar
  78. Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179(3):1913–1925PubMedCrossRefGoogle Scholar
  79. Ramchandani D, Weber GF (2015) Interactions between osteopontin and vascular endothelial growth factor: implications for cancer. Biochim Biophys Acta 1855(2):202–222PubMedGoogle Scholar
  80. Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang L (2014) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochimica et Biophysica Acta. doi: 10.1016/j.bbamem.2014.10.029
  81. Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R (2002) Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 99(7):2569–2577PubMedCrossRefGoogle Scholar
  82. Savasan S, Buyukavci M, Buck S, Ravindranath Y (2004) Leukaemia/lymphoma cell microparticles in childhood mature B cell neoplasms. J Clin Pathol 57(6):651–653PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schlienger S, Campbell S, Claing A (2014) ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol Biol Cell 25(1):17–29PubMedPubMedCentralCrossRefGoogle Scholar
  84. Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG (2004) Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol 125(6):804–813PubMedCrossRefGoogle Scholar
  85. Toth B et al (2008) Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers. Anticancer Res 28(2A):1107–1112PubMedGoogle Scholar
  86. Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39(16):7223–7233PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ujhazy P, Berleth ES, Pietkiewicz JM, Kitano H, Skaar JR, Ehrke MJ, Mihich E (1996) Evidence for the involvement of ecto-5’-nucleotidase (CD73) in drug resistance. Int J Cancer 68(4):493–500PubMedCrossRefGoogle Scholar
  88. van den Akker J et al (2012) Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids 42(2–3):961–973PubMedCrossRefGoogle Scholar
  89. Vasconcelos FC, Silva KL, Souza PS, Silva LF, Moellmann-Coelho A, Klumb CE, Maia RC (2011) Variation of MDR proteins expression and activity levels according to clinical status and evolution of CML patients. Cytom Part B Clin Cytom 80(3):158–166CrossRefGoogle Scholar
  90. Verhagen AM, Coulson EJ, Vaux DL (2001) Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2(7):3009CrossRefGoogle Scholar
  91. Wang L et al (2008) Ecto-5’-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J Cancer Res Clin Oncol 134(3):365–372PubMedCrossRefGoogle Scholar
  92. Wang L et al (2013) Ecto-5’-nucleotidase (CD73) promotes tumor angiogenesis. Clin Exp Metastasis 30(5):671–680PubMedCrossRefGoogle Scholar
  93. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234PubMedCrossRefGoogle Scholar
  94. Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 125(7):1595–1603PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yang Y et al (2014) MiR-503 targets PI3K p85 and IKK-beta and suppresses progression of non-small cell lung cancer. Int J Cancer 135(7):1531–1542PubMedCrossRefGoogle Scholar
  96. Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z, Yin L (2007) RNA interference of ecto-5’-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin Exp Metastasis 24(6):439–448PubMedCrossRefGoogle Scholar
  97. Zhou J, Wang W (2011) Analysis of microRNA expression profiling identifies microRNA-503 regulates metastatic function in hepatocellular cancer cell. J Surg Oncol 104(3):278–283PubMedCrossRefGoogle Scholar
  98. Zhou R, Gong AY, Chen D, Miller RE, Eischeid AN, Chen XM (2013) Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PLoS ONE 8(5):e65153PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, Yang JM (2008) Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 76(5):582–588PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zlotnik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14(3):181–185PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Paloma Silva de Souza
    • 1
  • Roberta Soares Faccion
    • 1
  • Paula Sabbo Bernardo
    • 2
  • Raquel Ciuvalschi Maia
    • 1
    Email author
  1. 1.Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia MolecularBrazilian National Cancer Institute (INCA)Rio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em OncologiaINCARio de JaneiroBrazil

Personalised recommendations