Journal of Cancer Research and Clinical Oncology

, Volume 142, Issue 1, pp 213–224 | Cite as

MiR-345 suppresses proliferation, migration and invasion by targeting Smad1 in human prostate cancer

  • Qi-guang Chen
  • Wei Zhou
  • Tao Han
  • Shu-qi Du
  • Zhen-hua Li
  • Zhe Zhang
  • Guang-yi Shan
  • Chui-ze KongEmail author
Original Article – Cancer Research



The roles of dysregulated microRNAs in prostate cancer metastasis are still unknown. In this study, we found that the expression of miR-345 was significantly downregulated in prostate cancer and clinical prostate cancer tissues.

Materials, methods and results

Overexpression of miR-345 in prostate cancer cells suppressed proliferation, migration and invasion. Using nude mice model, we revealed that miR-345 inhibits the growth of prostate cancer cells in vivo and in vitro. Furthermore, we identified and validated Smad1 as a direct target of miR-345. Ectopic expression of Smad1 without its 3′-UTR rescued miR-345-induced cell migration and invasion inhibition.


Taken together, our data suggest that miR-345 exerts a suppressive effect on prostate cancer proliferation, invasion and migration through downregulation of Smad1.


Prostate cancer microRNA miR-345 Smad1 


Compliance with ethical standards

Conflict of interest



  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  2. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866. doi: 10.1038/nrc1997 PubMedCrossRefGoogle Scholar
  3. Chen Q, Zhao X, Zhang H, Yuan H, Zhu M, Sun Q et al (2014) MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol Carcinog. doi: 10.1002/mc.22204 Google Scholar
  4. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A et al (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497(7449):378–382. doi: 10.1038/nature12108 PubMedCrossRefGoogle Scholar
  5. Gonzales JC, Fink L, Goodman OB Jr, Symanowski JT, Vogelzang NJ, Ward DC (2011) Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer 9(1):39–45. doi: 10.1016/j.clgc.2011.05.008 PubMedCrossRefGoogle Scholar
  6. Greene KL, Fau MM, Elkin EP, Cooperberg MR, Pasta DJ, Kattan MW, Wallace K et al (2004) Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol 171(6 Pt 1):2255–2259PubMedCrossRefGoogle Scholar
  7. Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res 4(7):1073–1083. doi: 10.1158/1940-6207.CAPR-10-0333 CrossRefGoogle Scholar
  8. Hou YY, Cao WW, Li L, Li SP, Liu T, Wan HY et al (2011) MicroRNA-519d targets MKi67 and suppresses cell growth in the hepatocellular carcinoma cell line QGY-7703. Cancer Lett 307(2):182–190. doi: 10.1016/j.canlet.2011.04.002 PubMedCrossRefGoogle Scholar
  9. Hudson SV, O’Malley DM, Miller SM (2015) Achieving optimal delivery of follow-up care for prostate cancer survivors: improving patient outcomes. Patient Relat Outcome Meas 6:75–90. doi: 10.2147/PROM.S49588 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Huo W, Jin N, Fan L, Wang W (2014) MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells. Mol Cell Biochem 388(1–2):123–133. doi: 10.1007/s11010-013-1904-3 PubMedCrossRefGoogle Scholar
  11. Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M et al (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113(11):1231–1241. doi: 10.1161/CIRCRESAHA.113.301780 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249. doi: 10.3322/caac.20006 PubMedCrossRefGoogle Scholar
  13. Jones J, Grizzle W, Wang H, Yates C (2013) MicroRNAs that affect prostate cancer: emphasis on prostate cancer in African Americans. Biotech Histochem 88(7):410–424. doi: 10.3109/10520295.2013.807069 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE et al (2014) miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 20(17):4636–4646. doi: 10.1158/1078-0432.CCR-14-0305 CrossRefGoogle Scholar
  15. Liu R, Li J, Teng Z, Zhang Z, Xu Y (2013) Overexpressed MicroRNA-182 promotes proliferation and invasion in prostate cancer PC-3 cells by down-regulating N-myc downstream regulated gene 1 (NDRG1). PLoS ONE 8(7):e68982. doi: 10.1371/journal.pone.0068982 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Liu CW, Li CH, Peng YJ, Cheng YW, Chen HW, Liao PL et al (2014) Snail regulates Nanog status during the epithelial-mesenchymal transition via the Smad1/Akt/GSK3beta signaling pathway in non-small-cell lung cancer. Oncotarget 5(11):3880–3894PubMedPubMedCentralCrossRefGoogle Scholar
  17. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res Off J Am Soc Bone Miner Res 23(2):287–295. doi: 10.1359/jbmr.071011 CrossRefGoogle Scholar
  18. Moore TH, King AJ, Evans M, Sharp D, Persad R, Huntley AL (2015) Supportive care for men with prostate cancer: why are the trials not working? A systematic review and recommendations for future trials. Cancer Med. doi: 10.1002/cam4.446 PubMedCentralGoogle Scholar
  19. Schou JV, Rossi S, Jensen BV, Nielsen DL, Pfeiffer P, Hogdall E et al (2014) miR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS ONE 9(6):e99886. doi: 10.1371/journal.pone.0099886 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241. doi: 10.3322/caac.21149 PubMedCrossRefGoogle Scholar
  21. Sita-Lumsden A, Dart D, Waxman J, Bevan CL (2013) Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer 108(10):1925–1930. doi: 10.1038/bjc.2013.192 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Tang JT, Wang JL, Du W, Hong J, Zhao SL, Wang YC et al (2011) MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis 32(8):1207–1215. doi: 10.1093/carcin/bgr114 PubMedCrossRefGoogle Scholar
  23. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341. doi: 10.1038/nrc3500 PubMedCrossRefGoogle Scholar
  24. Wang SY, Shiboski S, Belair CD, Cooperberg MR, Simko JP, Stoppler H et al (2014) miR-19, miR-345, miR-519c-5p serum levels predict adverse pathology in prostate cancer patients eligible for active surveillance. PLoS ONE 9(6):e98597. doi: 10.1371/journal.pone.0098597 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Wei Q, Li YX, Liu M, Li X, Tang H (2012) MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 64(8):697–704. doi: 10.1002/iub.1051 PubMedCrossRefGoogle Scholar
  26. Williams LV, Veliceasa D, Vinokour E, Volpert OV (2013) miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS ONE 8(12):e83991. doi: 10.1371/journal.pone.0083991 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH et al (2012) MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett 322(2):148–158. doi: 10.1016/j.canlet.2012.02.038 PubMedCrossRefGoogle Scholar
  28. Yin Q, Wang X, Fewell C, Cameron J, Zhu H, Baddoo M et al (2010) MicroRNA miR-155 inhibits bone morphogenetic protein (BMP) signaling and BMP-mediated Epstein-Barr virus reactivation. J Virol 84(13):6318–6327. doi: 10.1128/JVI.00635-10 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zhou ZW, Li XX, He ZX, Pan ST, Yang Y, Zhang X et al (2015) Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Design Dev Therapy 9:1511–1554. doi: 10.2147/DDDT.S75976 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qi-guang Chen
    • 1
  • Wei Zhou
    • 2
  • Tao Han
    • 3
  • Shu-qi Du
    • 1
  • Zhen-hua Li
    • 1
  • Zhe Zhang
    • 1
  • Guang-yi Shan
    • 4
  • Chui-ze Kong
    • 1
    Email author
  1. 1.Department of UrologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Diagnostic RadiologyGeneral Hospital of Shenyang Military RegionShenyangChina
  3. 3.Department of OncologyGeneral Hospital of Shenyang Military RegionShenyangChina
  4. 4.Department of UrologyLiaoNing Cancer Hospital and InstituteShenyangChina

Personalised recommendations