Advertisement

Lung cancer: developments, concepts, and specific aspects of the new WHO classification

  • Iver Petersen
  • Arne Warth
Review – Cancer Research

Abstract

Introduction

Diagnostic methods and algorithms for the diagnosis of pulmonary neoplasms have considerably changed over the recent years. Based on large-scale molecular characterization studies and the development of targeted therapies, precise morphological, immunohistochemical, and molecular pathological tumor subtyping is now of utmost importance for evidence-based treatment decisions. Changes of diagnostic concepts initially referred to biopsies and cytology specimens but are now also transferred to resection specimens.

Methods

This review is focused on recent developments in morphological and immunohistochemical subtyping of pulmonary neoplasms and concepts of tumor progression. It also provides perspectives on relevant changes of diagnostic concepts within the context of the new WHO classification.

Conclusion

It becomes apparent that a three-step diagnostic concept based on morphology, immunohistochemistry, and molecular pathology is important to meet the requirements of an increasingly more complex, interdisciplinary care of lung cancer patients and to allow for reliable, clinically meaningful tumor diagnoses.

Keywords

Lung cancer Diagnosis Classification Immunohistochemistry Molecular pathology 

Notes

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. Addis BJ, Dewar A, Thurlow NP (1988) Giant cell carcinoma of the lung—immunohistochemical and ultrastructural evidence of dedifferentiation. J Pathol 155:231–240CrossRefPubMedGoogle Scholar
  2. Antonescu CR, Le Loarer F, Mosquera JM et al (2013) Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom Cancer 52:775–784CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brambilla E, Moro D, Veale D et al (1992) Basal cell (basaloid) carcinoma of the lung: a new morphologic and phenotypic entity with separate prognostic significance. Hum Pathol 23:993–1003CrossRefPubMedGoogle Scholar
  4. Bubendorf L (2011) Preneoplastic lesions of pulmonary carcinoma. Der Pathologe 32(Suppl 2):218–223CrossRefPubMedGoogle Scholar
  5. Cavazza A, Colby TV, Tsokos M et al (1996) Lung tumors with a rhabdoid phenotype. Am J Clin Pathol 105:182–188CrossRefPubMedGoogle Scholar
  6. Chejfec G, Candel A, Jansson DS et al (1991) Immunohistochemical features of giant cell carcinoma of the lung: patterns of expression of cytokeratins, vimentin, and the mucinous glycoprotein recognized by monoclonal antibody A-80. Ultrastruct Pathol 15:131–138CrossRefPubMedGoogle Scholar
  7. Chetty R, Bhana B, Batitang S et al (1997) Lung carcinomas composed of rhabdoid cells. Eur J Surg Oncol 23:432–434CrossRefPubMedGoogle Scholar
  8. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27CrossRefPubMedGoogle Scholar
  9. Dawson MA, Kouzarides T, Huntly BJ (2012) Targeting epigenetic readers in cancer. New Engl J Med 367:647–657CrossRefPubMedGoogle Scholar
  10. Falconieri G, Moran CA, Pizzolitto S et al (2005) Intrathoracic rhabdoid carcinoma: a clinicopathological, immunohistochemical, and ultrastructural study of 6 cases. Ann Diagn Pathol 9:279–283CrossRefPubMedGoogle Scholar
  11. Fernandez-Cuesta L, Peifer M, Lu X et al (2014a) Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 5:3518CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fernandez-Cuesta L, Peifer M, Lu X et al (2014b) Cross-entity mutation analysis of lung neuroendocrine tumors sheds light into their molecular origin and identifies new therapeutic targets. In: Proceeding of the American Association for Cancer Research. Annual Meeting 2014, vol. 1531, San Diego, USAGoogle Scholar
  13. Janssen-Heijnen ML, Coebergh JW (2001) Trends in incidence and prognosis of the histological subtypes of lung cancer in North America, Australia, New Zealand and Europe. Lung Cancer 31:123–137CrossRefPubMedGoogle Scholar
  14. Junker K, Petersen I (2009) Small cell lung cancer: pathology and molecular pathology. Der Pathologe 30:131–140CrossRefPubMedGoogle Scholar
  15. Kadota K, Yeh YC, Sima CS et al (2014) The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod Pathol 27:690–700CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kadota K, Nitadori JI, Sima CS et al (2015) Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences following limited resection for small stage I lung adenocarcinomas. J Thorac Oncol 10:806–814CrossRefPubMedGoogle Scholar
  17. Kaneko T, Honda T, Fukushima M et al (2002) Large cell carcinoma of the lung with a rhabdoid phenotype. Pathol Int 52:643–647CrossRefPubMedGoogle Scholar
  18. Knösel T, Heretsch S et al (2010) TLE1 is a robust biomarker for synovial sarcoma and correlates with t(X;18): analysis of 319 cases. Eur J Cancer 46(6):1170–1176CrossRefPubMedGoogle Scholar
  19. Kuroda M, Oka T, Horiuchi H et al (1994) Giant cell tumor of the lung: an autopsy case report with immunohistochemical observations. Pathol Int 44:158–163CrossRefPubMedGoogle Scholar
  20. Lewis DR, Check DP, Caporaso NE et al (2014) US lung cancer trends by histologic type. Cancer 120:2883–2892CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li Y, Linnoila RI (2012) Multidirectional differentiation of Achaete-Scute homologue-1-defined progenitors in lung development and injury repair. Am J Respir Cell Mol Biol 47:768–775CrossRefPubMedPubMedCentralGoogle Scholar
  22. Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest J Tech Methods Pathol 86:425–444CrossRefGoogle Scholar
  23. Marci V, Volante M, Cappia S et al (2007) Basaloid adenocarcinoma. A new variant of pulmonary adenocarcinoma. Virchows Arch Int J Pathol 451:729–736CrossRefGoogle Scholar
  24. Mireskandari M, Abdirad A, Zhang Q et al (2013) Association of small foci of diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) with adenocarcinoma of the lung. Pathol Res Pract 209:578–584CrossRefPubMedGoogle Scholar
  25. Moreira AL, Joubert P, Downey RJ et al (2014) Cribriform and fused glands are patterns of high-grade pulmonary adenocarcinoma. Hum Pathol 45:213–220CrossRefPubMedGoogle Scholar
  26. Moro-Sibilot D, Lantuejoul S, Diab S et al (2008) Lung carcinomas with a basaloid pattern: a study of 90 cases focusing on their poor prognosis. Eur Respir J 31:854–859CrossRefPubMedGoogle Scholar
  27. Nitsche K, Gunther B, Katenkamp D et al (2012) Thoracic neoplasms at the Jena reference center for soft tissue tumors. J Cancer Res Clin Oncol 138:415–424CrossRefPubMedGoogle Scholar
  28. Peifer M, Fernandez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110CrossRefPubMedGoogle Scholar
  29. Petersen I (2013) The new classification of lung adenocarcinoma. Zentralbl Chir 138(Suppl 1):S16–S24PubMedGoogle Scholar
  30. Petersen I, Petersen S (2001) Towards a genetic-based classification of human lung cancer. Anal Cell Pathol 3:111–121CrossRefGoogle Scholar
  31. Petersen I, Kotb WF et al (2009) Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer 65:312–318CrossRefPubMedGoogle Scholar
  32. Shimazaki H, Aida S, Sato M et al (2001) Lung carcinoma with rhabdoid cells: a clinicopathological study and survival analysis of 14 cases. Histopathology 38:425–434CrossRefPubMedGoogle Scholar
  33. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30CrossRefPubMedGoogle Scholar
  34. Stelow EB (2011) A review of NUT midline carcinoma. Head Neck Pathol 5:31–35CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tamboli P, Toprani TH, Amin MB et al (2004) Carcinoma of lung with rhabdoid features. Hum Pathol 35:8–13CrossRefPubMedGoogle Scholar
  36. Thunnissen E, Beasley MB, Borczuk AC et al (2012) Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol 25:1574–1583CrossRefPubMedGoogle Scholar
  37. Travis WD, Brambilla E, Müller-Hermeling K, Harris CC (2004) WHO classification of tumours. Pathology and genetics of tumours of the lung, pleura, thymus and heart, 3rd edn. IARC Press, LyonGoogle Scholar
  38. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285CrossRefPubMedPubMedCentralGoogle Scholar
  39. Travis WD, Brambilla E, Noguchi M et al (2013) Diagnosis of lung adenocarcinoma in resected specimens: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med 137:685–705CrossRefPubMedGoogle Scholar
  40. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (2015) WHO classification of tumours of the lung, pleura, thymus and thymus, 4th edn. IARC, LyonGoogle Scholar
  41. Warth A, Herpel E, Schmahl A et al (2008) Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH) in association with an adenocarcinoma: a case report. J Med Case Rep 2:21CrossRefPubMedPubMedCentralGoogle Scholar
  42. Warth A, Muley T, Meister M et al (2012a) The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446CrossRefPubMedGoogle Scholar
  43. Warth A, Cortis J, Fink L et al (2012b) Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS classification. Virchows Arch 461:185–193CrossRefPubMedGoogle Scholar
  44. Warth A, Stenzinger A, Von Brunneck AC et al (2012c) Interobserver variability in the application of the novel IASLC/ATS/ERS classification for pulmonary adenocarcinomas. Eur Respir J 40:1221–1227CrossRefPubMedGoogle Scholar
  45. Warth A, Muley T, Herpel E et al (2012d) Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 61:1017–1025CrossRefPubMedGoogle Scholar
  46. Warth A, Bubendorf L, Gutz S et al (2013a) Molecular pathological diagnosis in cytopathology of non-small-cell lung cancer. Standardization of specimen processing. Der Pathologe 34:310–317CrossRefPubMedGoogle Scholar
  47. Warth A, Stenzinger A, Weichert W (2013b) Novel morphological and molecular aspects of lung cancer. Der Pathologe 34:419–428CrossRefPubMedGoogle Scholar
  48. Warth A, Muley T, Kossakowski C et al (2015a) Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J Thorac Oncol 10:638–644CrossRefPubMedGoogle Scholar
  49. Warth A, Muley T, Kossakowski C et al (2015b) Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. Am J Surg Pathol 39:793–801CrossRefPubMedGoogle Scholar
  50. Weichert W, Warth A (2014) Early lung cancer with lepidic pattern: adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic predominant adenocarcinoma. Curr Opin Pulm Med 20:309–316CrossRefPubMedGoogle Scholar
  51. Yilmazbayhan D, Ates LE, Dilege S et al (2005) Pulmonary large cell carcinoma with rhabdoid phenotype. Ann Diagn Pathol 9:223–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of PathologyUniversity Hospital JenaJenaGermany
  2. 2.Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Translational Lung Research Center HeidelbergMember of the German Center for Lung ResearchHeidelbergGermany

Personalised recommendations