Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 12, pp 2079–2095 | Cite as

Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities

  • Judith Niesen
  • Christoph Stein
  • Hannes Brehm
  • Grit Hehmann-Titt
  • Rolf Fendel
  • Georg Melmer
  • Rainer Fischer
  • Stefan Barth
Original Article – Cancer Research



The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA′).


The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA′ (from cetuximab) and scFv1711-ETA′ (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies.


Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed.


These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA′-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.


Epidermal growth factor receptor (EGFR) Immunotoxin (IT) Single-chain fragment variable (scFv) Pseudomonas exotoxin A (ETA′) SNAP-tag Cancer therapy 



Christoph Stein was supported by the INTERREG IV A project Microbiomed. This work was funded in part by a grant from the German province NRW from EFRE “European Fund for Regional Development” under the theme “Europe—Investment in our Future.” We would like to thank Radoslav Mladenov and Nina Berges (Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany) for their help with immunohistochemistry and confocal microscopy. For obtaining the tissue sections, we want to thank Dr. Mehmet Kemal Tur (Department of Pathology, Justus-Liebig University, Giessen, Germany). We also thank Dr. Richard M. Twyman for critical reading of the manuscript.

Conflict of interest

Georg Melmer is a stakeholder of Pharmedartis GmbH and Grit Hehmann-Titt is employed by Pharmedartis. The other authors declare no conflicts of interest.

Ethical standard

In accordance with the Helsinki Declaration of 1975, primary tissue samples were obtained during routine clinical practice at the University Hospital Giessen approved by the appropriate ethics committee.

Supplementary material

432_2015_1975_MOESM1_ESM.tif (278 kb)
Fig. S1 The scFv2112-SNAP construct labeled with BG-Alexa Fluor® 488 incubated with the EGFR- cell line U937. Hoechst-stained nucleoli are shown in the left image. No unspecific binding of the ITs to U937 cells was detected (middle image). The right picture shows the white light channel. (TIFF 278 kb)
432_2015_1975_MOESM2_ESM.tif (272 kb)
Fig. S2 The scFv-SNAP constructs, scFv2112-SNAP and scFv1711-SNAP, the parental mAbs cetuximab and panitumumab and a non-binding mock-ETA’ construct were used as controls in XTT assays. Unspecific effects were not observed up to the highest starting concentration used for the ITs (80 nM). As before the experiments were carried out at least four times in triplicate or quadruplicate, GraphPad Prism software was used for calculation of potential reduction in protein synthesis. (TIFF 271 kb)


  1. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol 2012:980250. doi: 10.1155/2012/980250 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763. doi: 10.1038/nrc903 CrossRefPubMedGoogle Scholar
  3. Alvarenga ML et al (2012) In-depth biophysical analysis of interactions between therapeutic antibodies and the extracellular domain of the epidermal growth factor receptor. Anal Biochem 421:138–151. doi: 10.1016/j.ab.2011.10.039 CrossRefPubMedGoogle Scholar
  4. Amoury M et al (2013) SNAP-tag based agents for preclinical in vitro imaging in malignant diseases. Curr Pharm Des 19:5429–5436CrossRefPubMedGoogle Scholar
  5. Antignani A, Fitzgerald D (2013) Immunotoxins: the role of the toxin. Toxins 5:1486–1502. doi: 10.3390/toxins5081486 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Armistead PM et al (2007) Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients. Cancer 110:2293–2303. doi: 10.1002/cncr.23038 CrossRefPubMedGoogle Scholar
  7. Asano R et al (2013) Multimerization of anti-(epidermal growth factor receptor) IgG fragments induces an antitumor effect: the case for humanized 528 scFv multimers. FEBS J 280:4816–4826. doi: 10.1111/febs.12451 CrossRefPubMedGoogle Scholar
  8. Azemar M et al (2000) Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo. Int J Cancer 86:269–275CrossRefPubMedGoogle Scholar
  9. Bachran D et al (2010) Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells. Int J Cancer 127:1453–1461. doi: 10.1002/ijc.25123 CrossRefPubMedGoogle Scholar
  10. Barnea I, Ben-Yosef R, Karaush V, Benhar I, Vexler A (2013) Targeting EGFR-positive cancer cells with cetuximab-ZZ-PE38: results of in vitro and in vivo studies. Head Neck 35:1171–1177. doi: 10.1002/hed.23093 CrossRefPubMedGoogle Scholar
  11. Barth S (2002) Technology evaluation: bL22, NCI. Curr opin Mol Ther 4:72–75PubMedGoogle Scholar
  12. Becker N, Benhar I (2012) Antibody-based immunotoxins for the treatment of cancer. Antibodies 1:39–69. doi: 10.3390/antib1010039 CrossRefGoogle Scholar
  13. Bruell D et al (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA′ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186PubMedGoogle Scholar
  14. Bruell D et al (2005) Recombinant anti-EGFR immunotoxin 425(scFv)-ETA′ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313PubMedGoogle Scholar
  15. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia (New York, NY) 1:50–62CrossRefGoogle Scholar
  16. Cao Y, Mohamedali KA, Marks JW, Cheung LH, Hittelman WN, Rosenblum MG (2013) Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu. Mol Cancer Ther 12:979–991. doi: 10.1158/1535-7163.MCT-13-0002 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Carey LA et al (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30:2615–2623. doi: 10.1200/JCO.2010.34.5579 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Cathomas R et al (2012) Efficacy of cetuximab in metastatic castration-resistant prostate cancer might depend on EGFR and PTEN expression: results from a phase II trial (SAKK 08/07). Clin Cancer Res 18:6049–6057. doi: 10.1158/1078-0432.ccr-12-2219 CrossRefPubMedGoogle Scholar
  19. Chandramohan V, Bigner DD (2013) A novel recombinant immunotoxin-based therapy targeting wild-type and mutant EGFR improves survival in murine models of glioblastoma. Oncoimmunology 2:e26852. doi: 10.4161/onci.26852 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Chandramohan V et al (2013) Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res 19:4717–4727. doi: 10.1158/1078-0432.ccr-12-3891 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Chaudhary VK, FitzGerald DJ, Adhya S, Pastan I (1987) Activity of a recombinant fusion protein between transforming growth factor type alpha and Pseudomonas toxin. Proc Natl Acad Sci USA 84:4538–4542PubMedCentralCrossRefPubMedGoogle Scholar
  22. Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother (Hagerstown, Md : 1997) 32:574–584. doi: 10.1097/CJI.0b013e3181a6981c CrossRefGoogle Scholar
  23. de Goeij BE et al (2014) HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design. mAbs 6:392–402. doi: 10.4161/mabs.27705 PubMedCentralCrossRefPubMedGoogle Scholar
  24. de Larco JE, Todaro GJ (1978) Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol 94:335–342. doi: 10.1002/jcp.1040940311 CrossRefPubMedGoogle Scholar
  25. Faller BA, Burtness B (2009) Treatment of pancreatic cancer with epidermal growth factor receptor-targeted therapy. Biologics 3:419–428PubMedCentralPubMedGoogle Scholar
  26. Freeman DJ (2009) Safety and efficacy of panitumumab in the treatment of metastatic colorectal cancer. Clin Med 2009(1):633–645Google Scholar
  27. Ganti R et al (2006) Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 19:1213–1220. doi: 10.1038/modpathol.3800636 CrossRefPubMedGoogle Scholar
  28. Gerber HP, Koehn FE, Abraham RT (2013) The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 30:625–639. doi: 10.1039/c3np20113a CrossRefPubMedGoogle Scholar
  29. Gilabert-Oriol R et al (2013) Modified trastuzumab and cetuximab mediate efficient toxin delivery while retaining antibody-dependent cell-mediated cytotoxicity in target cells. Mol Pharm 10:4347–4357. doi: 10.1021/mp400444q CrossRefPubMedGoogle Scholar
  30. Hristodorov D et al (2013) Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer 109:1570–1578. doi: 10.1038/bjc.2013.457 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Hussain AF, Kampmeier F, von Felbert V, Merk HF, Tur MK, Barth S (2011) SNAP-tag technology mediates site specific conjugation of antibody fragments with a photosensitizer and improves target specific phototoxicity in tumor cells. Bioconjugate Chem 22:2487–2495. doi: 10.1021/bc200304k CrossRefGoogle Scholar
  32. Jakobovits A, Yang XD, Gallo M, Jia X (2001) Human monoclonal antibodies to epidermal growth factor receptor. US PatentGoogle Scholar
  33. Kamat V et al (2008) Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol Ther 7:726–733CrossRefPubMedGoogle Scholar
  34. Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A, Barth S (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjugate Chem 20:1010–1015. doi: 10.1021/bc9000257 CrossRefGoogle Scholar
  35. Kampmeier F et al (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imaging 37:1926–1934. doi: 10.1007/s00259-010-1482-5 CrossRefPubMedGoogle Scholar
  36. Kim GP, Grothey A (2008) Targeting colorectal cancer with human anti-EGFR monoclonocal antibodies: focus on panitumumab. Biologics 2:223–228PubMedCentralPubMedGoogle Scholar
  37. Koefoed K et al (2011) Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. mAbs 3:584–595. doi: 10.4161/mabs.3.6.17955 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J 8:E532–E551. doi: 10.1208/aapsj080363 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311. doi: 10.1016/j.ccr.2005.03.003 CrossRefPubMedGoogle Scholar
  40. Lukianova-Hleb EY, Belyanin A, Kashinath S, Wu X, Lapotko DO (2012) Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 33:1821–1826. doi: 10.1016/j.biomaterials.2011.11.015 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Madhumathi J, Verma RS (2012) Therapeutic targets and recent advances in protein immunotoxins. Curr Opin Microbiol 15:300–309. doi: 10.1016/j.mib.2012.05.006 CrossRefPubMedGoogle Scholar
  42. Mamot C, Ritschard R, Kung W, Park JW, Herrmann R, Rochlitz CF (2006) EGFR-targeted immunoliposomes derived from the monoclonal antibody EMD72000 mediate specific and efficient drug delivery to a variety of colorectal cancer cells. J Drug Target 14:215–223. doi: 10.1080/10611860600691049 CrossRefPubMedGoogle Scholar
  43. Matthey B, Engert A, Klimka A, Diehl V, Barth S (1999) A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene 229:145–153CrossRefPubMedGoogle Scholar
  44. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20:1s–13sPubMedGoogle Scholar
  45. Monnier PP, Vigouroux RJ, Tassew NG (2013) In vivo applications of single chain Fv (variable domain) (scFv) fragments. Antibodies 2:193–208. doi: 10.3390/antib2020193 CrossRefGoogle Scholar
  46. Muller KM, Arndt KM, Strittmatter W, Pluckthun A (1998) The first constant domain (C(H)1 and C(L)) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett 422:259–264CrossRefPubMedGoogle Scholar
  47. Murthy U, Basu A, Rodeck U, Herlyn M, Ross AH, Das M (1987) Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys 252:549–560CrossRefPubMedGoogle Scholar
  48. Nabholtz JM et al (2012) P3-14-01: panitumumab in combination with FEC 100 (5-fluorouracile, epirubicin, cyclophosphamide) followed by docetaxel (T) in patients with operable, triple negative breast cancer (TNBC): final results of a multicentre neoadjuvant pilot phase II study. Cancer Res 71:P3-14-01–P13-14-01. doi: 10.1158/0008-5472.sabcs11-p3-14-01 CrossRefGoogle Scholar
  49. Nachreiner T, Kampmeier F, Thepen T, Fischer R, Barth S, Stocker M (2008) Depletion of autoreactive B-lymphocytes by a recombinant myelin oligodendrocyte glycoprotein-based immunotoxin. J Neuroimmunol 195:28–35. doi: 10.1016/j.jneuroim.2008.01.001 CrossRefPubMedGoogle Scholar
  50. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15CrossRefPubMedGoogle Scholar
  51. Niesen J et al (2014) In vitro effects and ex vivo binding of an EGFR-specific immunotoxin on rhabdomyosarcoma cells. J Cancer Res Clin Oncol. doi: 10.1007/s00432-014-1884-z PubMedGoogle Scholar
  52. Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. mAbs 6:34–45. doi: 10.4161/mabs.27022 PubMedCentralCrossRefPubMedGoogle Scholar
  53. Pardo A, Stocker M, Kampmeier F, Melmer G, Fischer R, Thepen T, Barth S (2012) In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model. Cancer Immunol Immunother (CII) 61:1617–1626. doi: 10.1007/s00262-012-1219-3 CrossRefGoogle Scholar
  54. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med. doi: 10.1146/ PubMedGoogle Scholar
  55. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70:588–597. doi: 10.1158/0008-5472.CAN-09-1417 CrossRefPubMedGoogle Scholar
  56. Pines G, Kostler WJ, Yarden Y (2010) Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett 584:2699–2706. doi: 10.1016/j.febslet.2010.04.019 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Reichert JM (2014) Antibodies to watch in 2014: mid-year update. MAbs 6(4):799–802. doi: 10.4161/mabs.29282 CrossRefPubMedGoogle Scholar
  58. Ricci C et al (2000) Expression of HER/erbB family of receptor tyrosine kinases and induction of differentiation by glial growth factor 2 in human rhabdomyosarcoma cells. Int J Cancer 87:29–36CrossRefPubMedGoogle Scholar
  59. Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12:865–872. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  60. Sasaki T, Hiroki K, Yamashita Y (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Res Int 2013:546318. doi: 10.1155/2013/546318 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Schiffer S et al (2013) Species-dependent functionality of the human cytolytic fusion proteins granzyme B-H22(scFv) and H22(scFv)-angiogenin in macrophages. Antibodies 2:9–18. doi: 10.3390/antib2010009 CrossRefGoogle Scholar
  62. Schlessinger J Givol D, Bellot F, Kris R, Ricca G, Cheadle C, South V (2001) Monoclonal antibodies specific to human epidermal growth factor receptor an therapeutic methods employing same. US PatentGoogle Scholar
  63. Schmidt M, Vakalopoulou E, Schneider DW, Wels W (1997) Construction and functional characterization of scFv(14E1)-ETA—a novel, highly potent antibody-toxin specific for the EGF receptor. Br J Cancer 75:1575–1584PubMedCentralCrossRefPubMedGoogle Scholar
  64. Schneider MR, Yarden Y (2014) Structure and function of epigen, the last EGFR ligand. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2013.12.011 PubMedCentralGoogle Scholar
  65. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159. doi: 10.1038/nrd1957 CrossRefPubMedGoogle Scholar
  66. Schwenkert M et al (2008) A single chain immunotoxin, targeting the melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells. Melanoma Res 18:73–84. doi: 10.1097/CMR.0b013e3282f7c8f9 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287. doi: 10.1038/nrc3236 CrossRefPubMedGoogle Scholar
  68. Shim H (2011) One target, different effects: a comparison of distinct therapeutic antibodies against the same targets. Exp Mol Med 43:539–549. doi: 10.3858/emm.2011.43.10.063 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Singh R, Samant U, Hyland S, Chaudhari PR, Wels WS, Bandyopadhyay D (2007) Target-specific cytotoxic activity of recombinant immunotoxin scFv(MUC1)-ETA on breast carcinoma cells and primary breast tumors. Mol Cancer Ther 6:562–569. doi: 10.1158/1535-7163.MCT-06-0604 CrossRefPubMedGoogle Scholar
  70. Sliwkowski MX, Mellman I (2013) Antibody therapeutics in cancer. Science 341:1192–1198. doi: 10.1126/science.1241145 CrossRefPubMedGoogle Scholar
  71. Stahnke B et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924–2932. doi: 10.1158/1535-7163.MCT-08-0554 CrossRefPubMedGoogle Scholar
  72. Stein C et al (2010) Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol 148:879–889. doi: 10.1111/j.1365-2141.2009.08033.x CrossRefPubMedGoogle Scholar
  73. Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219CrossRefPubMedGoogle Scholar
  74. Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13:663–673. doi: 10.1038/nrc3559 CrossRefPubMedGoogle Scholar
  75. Thorpe SJ, Turner C, Heath A, Feavers I, Vatn I, Natvig JB, Thompson KM (2003) Clonal analysis of a human antimouse antibody (HAMA) response. Scand J Immunol 57:85–92CrossRefPubMedGoogle Scholar
  76. Tur MK et al (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 63:8414–8419PubMedGoogle Scholar
  77. Voigt M, Braig F, Gothel M, Schulte A, Lamszus K, Bokemeyer C, Binder M (2012) Functional dissection of the epidermal growth factor receptor epitopes targeted by panitumumab and cetuximab. Neoplasia (New York, NY) 14:1023–1031CrossRefGoogle Scholar
  78. von Minckwitz G et al (2005) Phase I clinical study of the recombinant antibody toxin scFv(FRP5)-ETA specific for the ErbB2/HER2 receptor in patients with advanced solid malignomas. Breast Cancer Res (BCR) 7:R617–R626. doi: 10.1186/bcr1264 CrossRefGoogle Scholar
  79. Weidle UH, Georges G, Brinkmann U (2012) Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics Proteomics 9:119–133PubMedGoogle Scholar
  80. Weldon JE, Pastan I (2011) A guide to taming a toxin–recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 278:4683–4700. doi: 10.1111/j.1742-4658.2011.08182.x PubMedCentralCrossRefPubMedGoogle Scholar
  81. Wilkins DK, Mayer A (2006) Development of antibodies for cancer therapy. Exp Opin Biol Therapy 6:787–796. doi: 10.1517/14712598.6.8.787 CrossRefGoogle Scholar
  82. Wolf P, Gierschner D, Buhler P, Wetterauer U, Elsasser-Beile U (2006) A recombinant PSMA-specific single-chain immunotoxin has potent and selective toxicity against prostate cancer cells. Cancer Immunol Immunother (CII) 55:1367–1373. doi: 10.1007/s00262-006-0131-0 CrossRefGoogle Scholar
  83. Wolf P et al (2010) Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer. J Immunother (Hagerstown, Md: 1997). doi: 10.1097/CJI.0b013e3181c5495c Google Scholar
  84. Yewale C, Baradia D, Vhora I, Patil S, Misra A (2013) Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34:8690–8707. doi: 10.1016/j.biomaterials.2013.07.100 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Judith Niesen
    • 1
  • Christoph Stein
    • 1
    • 2
  • Hannes Brehm
    • 2
  • Grit Hehmann-Titt
    • 4
  • Rolf Fendel
    • 1
    • 2
  • Georg Melmer
    • 4
  • Rainer Fischer
    • 1
    • 3
  • Stefan Barth
    • 1
    • 2
  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  2. 2.Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical EngineeringRWTH Aachen University ClinicAachenGermany
  3. 3.Institute of Molecular Biotechnology (Biology VII)RWTH Aachen UniversityAachenGermany
  4. 4.Pharmedartis GmbHAachenGermany

Personalised recommendations