Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 11, pp 1985–1994 | Cite as

Radiation-induced fibrosis: mechanisms and implications for therapy

  • Jeffrey M. Straub
  • Jacob New
  • Chase D. Hamilton
  • Chris Lominska
  • Yelizaveta Shnayder
  • Sufi M. ThomasEmail author
Review – Clinical Oncology



Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition.


A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms.


RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways.


Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.


Cancer Radiation Fibrosis Fibroblast Inflammation TGF-β Therapy 



The Department of Otolaryngology-Head and Neck Surgery at the University of Kansas Medical Center, the University of Kansas Cancer Center’s CCSG (1-P30-CA168524-02), and the Kansas Intellectual and Developmental Disabilities Center (NICHD HD00258) were the funding sources. The authors acknowledge Mr. Phil Shafer for generating the schematic diagram. We apologize to authors whose work was not cited due to space constraints.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abratt RP, Morgan GW, Silvestri G, Willcox P (2004) Pulmonary complications of radiation therapy. Clin Chest Med 25:167–177. doi: 10.1016/s0272-5231(03)00126-6 PubMedCrossRefGoogle Scholar
  2. Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and disease. J Immunol 174:4453–4460PubMedCrossRefGoogle Scholar
  3. Andreassen CN et al (2006) ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys 64:776–783. doi: 10.1016/j.ijrobp.2005.09.014 PubMedCrossRefGoogle Scholar
  4. Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM (2009) Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J Hematol Oncol 2:6. doi: 10.1186/1756-8722-2-6 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Azria D et al (2004) Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients. Br J Cancer 91:1251–1260. doi: 10.1038/sj.bjc.6602146 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Azria D et al (2008) Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res 14:6284–6288. doi: 10.1158/1078-0432.CCR-08-0700 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Baranano CF, Rosenthal EL, Morgan BA, McColloch NL, Magnuson JS (2011) Dynasplint for the management of trismus after treatment of upper aerodigestive tract cancer: a retrospective study. Ear Nose Throat J 90:584–590PubMedGoogle Scholar
  8. Barnett GC et al (2012) Randomized controlled trial of forward-planned intensity modulated radiotherapy for early breast cancer: interim results at 2 years. Int J Radiat Oncol Biol Phys 82:715–723. doi: 10.1016/j.ijrobp.2010.10.068 PubMedCrossRefGoogle Scholar
  9. Bentzen SM, Overgaard M (1991) Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 20:159–165CrossRefGoogle Scholar
  10. Bentzen SM, Overgaard M, Thames HD, Christensen JJ, Overgaard J (1989) Early and late normal-tissue injury after postmastectomy radiotherapy alone or combined with chemotherapy. Int J Radiat Biol 56:711–715PubMedCrossRefGoogle Scholar
  11. Bentzen SM, Overgaard M, Overgaard J (1993) Clinical correlations between late normal tissue endpoints after radiotherapy: implications for predictive assays of radiosensitivity. Eur J Cancer 29A:1373–1376PubMedCrossRefGoogle Scholar
  12. Bhrany AD, Izzard M, Wood AJ, Futran ND (2007) Coronoidectomy for the treatment of trismus in head and neck cancer patients. Laryngoscope 117:1952–1956. doi: 10.1097/MLG.0b013e31812eee13 PubMedCrossRefGoogle Scholar
  13. Boerma M, Hauer-Jensen M (2010) Potential targets for intervention in radiation-induced heart disease. Curr Drug Targets 11:1405–1412PubMedCentralPubMedCrossRefGoogle Scholar
  14. Borger JH, Kemperman H, Smitt HS, Hart A, van Dongen J, Lebesque J, Bartelink H (1994) Dose and volume effects on fibrosis after breast conservation therapy. Int J Radiat Oncol Biol Phys 30:1073–1081PubMedCrossRefGoogle Scholar
  15. Bourgeois JF, Gourgou S, Kramar A, Lagarde JM, Guillot B (2008) A randomized, prospective study using the LPG technique in treating radiation-induced skin fibrosis: clinical and profilometric analysis. Skin Res Technol 14:71–76. doi: 10.1111/j.1600-0846.2007.00263.x PubMedGoogle Scholar
  16. Bourgier C et al (2005) Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 54:336–343. doi: 10.1136/gut.2004.051169 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Bourhis J et al (2006) Phase III randomized trial of very accelerated radiation therapy compared with conventional radiation therapy in squamous cell head and neck cancer: a GORTEC trial. Clin Oncol 24:2873–2878. doi: 10.1200/JCO.2006.08.057 CrossRefGoogle Scholar
  18. Box RC, Reul-Hirche HM, Bullock-Saxton JE, Furnival CM (2002) Shoulder movement after breast cancer surgery: results of a randomised controlled study of postoperative physiotherapy. Breast Cancer Res Treat 75:35–50PubMedCrossRefGoogle Scholar
  19. Burger A, Loffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73:401–408PubMedCrossRefGoogle Scholar
  20. Calveley VL, Khan MA, Yeung IW, Vandyk J, Hill RP (2005) Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int J Radiat Biol 81:887–899. doi: 10.1080/09553000600568002 PubMedCrossRefGoogle Scholar
  21. Campana F et al (2004) Topical superoxide dismutase reduces post-irradiation breast cancer fibrosis. J Cell Mol Med 8:109–116PubMedCrossRefGoogle Scholar
  22. Camphausen K (2013) Pirfenidone in treating patients with fibrosis caused by radiation therapy for cancer. Accessed 23 Oct 2014
  23. Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962PubMedCrossRefGoogle Scholar
  24. Cheuk IW, Yip SP, Kwong DL, Wu VW (2014) Association of and gene haplotypes with the development of radiation-induced fibrosis in patients with nasopharyngeal carcinoma. Mol Clin Oncol 2:553–558. doi: 10.3892/mco.2014.276 PubMedCentralPubMedGoogle Scholar
  25. Chithra P, Sajithlal GB, Chandrakasan G (1998) Influence of Aloe vera on the glycosaminoglycans in the matrix of healing dermal wounds in rats. J Ethnopharmacol 59:179–186PubMedCrossRefGoogle Scholar
  26. Chua DT, Lo C, Yuen J, Foo YC (2001) A pilot study of pentoxifylline in the treatment of radiation-induced trismus. Am J Clin Oncol 24:366–369PubMedCrossRefGoogle Scholar
  27. Chung YL, Wang AJ, Yao LF (2004) Antitumor histone deacetylase inhibitors suppress cutaneous radiation syndrome: implications for increasing therapeutic gain in cancer radiotherapy. Mol Cancer Ther 3:317–325PubMedCrossRefGoogle Scholar
  28. Coia LR, Myerson RJ, Tepper JE (1995) Late effects of radiation therapy on the gastrointestinal tract. Int J Radiat Oncol Biol Phys 31:1213–1236. doi: 10.1016/0360-3016(94)00419-l PubMedCrossRefGoogle Scholar
  29. Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179. doi: 10.1016/S0074-7696(07)57004-X PubMedCrossRefGoogle Scholar
  30. Darley-Usmar V, Halliwell B (1996) Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 13:649–662PubMedCrossRefGoogle Scholar
  31. Davis AM et al (2005) Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol J Eur Soc Ther Radiol Oncol 75:48–53CrossRefGoogle Scholar
  32. Delanian S, Lefaix JL (2002) Complete healing of severe osteoradionecrosis with treatment combining pentoxifylline, tocopherol and clodronate. Br J Radiol 75:467–469PubMedCrossRefGoogle Scholar
  33. Delanian S, Martin M, Bravard A, Luccioni C, Lefaix JL (1998) Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage. Radiother Oncol J Eur Soc Ther Radiol Oncol 47:255–261CrossRefGoogle Scholar
  34. Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol 17:3283–3290PubMedGoogle Scholar
  35. Delanian S, Martin M, Bravard A, Luccioni C, Lefaix JL (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother Oncol J Eur Soc Ther Radiol Oncol 58:325–331CrossRefGoogle Scholar
  36. Delanian S, Depondt J, Lefaix JL (2005) Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: a phase II trial. Head Neck 27:114–123. doi: 10.1002/hed.20121 PubMedCrossRefGoogle Scholar
  37. Deng J, Ridner SH, Wells N, Dietrich MS, Murphy BA (2014) Development and preliminary testing of head and neck cancer related external lymphedema and fibrosis assessment criteria. Eur J Oncol Nurs. doi: 10.1016/j.ejon.2014.07.006 PubMedGoogle Scholar
  38. Denham JW, Hauer-Jensen M (2002) The radiotherapeutic injury—a complex ‘wound’. Radiother Oncol J Eur Soc Ther Radiol Oncol 63:129–145CrossRefGoogle Scholar
  39. Dijkstra PU, Kalk WW, Roodenburg JL (2004) Trismus in head and neck oncology: a systematic review. Oral Oncol 40:879–889. doi: 10.1016/j.oraloncology.2004.04.003 PubMedCrossRefGoogle Scholar
  40. Donovan E et al (2007) Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 82:254–264. doi: 10.1016/j.radonc.2006.12.008 CrossRefGoogle Scholar
  41. Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol J Eur Soc Ther Radiol Oncol 61:223–231CrossRefGoogle Scholar
  42. Edvardsen H et al (2007) Linkage disequilibrium pattern of the ATM gene in breast cancer patients and controls; association of SNPs and haplotypes to radio-sensitivity and post-lumpectomy local recurrence. Radiat Oncol 2:25. doi: 10.1186/1748-717X-2-25 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Edvardsen H et al (2013) SNP in TXNRD2 associated with radiation-induced fibrosis: a study of genetic variation in reactive oxygen species metabolism and signaling. Int J Radiat Oncol Biol Phys 86:791–799. doi: 10.1016/j.ijrobp.2013.02.025 PubMedCrossRefGoogle Scholar
  44. Eisbruch A et al (2003) Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer. World J Surg 27:832–837PubMedCrossRefGoogle Scholar
  45. Evans P, Halliwell B (1999) Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci 884:19–40PubMedCrossRefGoogle Scholar
  46. Evans ML, Graham MM, Mahler PA, Rasey JS (1987) Use of steroids to suppress vascular response to radiation. Int J Radiat Oncol Biol Phys 13:563–567PubMedCrossRefGoogle Scholar
  47. Finkelstein JN, Johnston C, Barrett T, Oberdorster G (1997) Particulate-cell interactions and pulmonary cytokine expression. Environ Health Perspect 105(Suppl 5):1179–1182PubMedCentralPubMedCrossRefGoogle Scholar
  48. Finlay GA, Thannickal VJ, Fanburg BL, Paulson KE (2000) Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem 275:27650–27656. doi: 10.1074/jbc.M000893200 PubMedGoogle Scholar
  49. Flechsig P et al (2012) LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res 18:3616–3627. doi: 10.1158/1078-0432.CCR-11-2855 PubMedCrossRefGoogle Scholar
  50. Ford AQ, Dasgupta P, Mikhailenko I, Smith EM, Noben-Trauth N, Keegan AD (2012) Adoptive transfer of IL-4Ralpha + macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol 13:6. doi: 10.1186/1471-2172-13-6 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M (2013) Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat Res 180:546–552. doi: 10.1667/RR13350.1 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Geara FB, Komaki R, Tucker SL, Travis EL, Cox JD (1998) Factors influencing the development of lung fibrosis after chemoradiation for small cell carcinoma of the lung: evidence for inherent interindividual variation. Int J Radiat Oncol Biol Phys 41:279–286PubMedCrossRefGoogle Scholar
  53. Gold DG, Miller RC, Petersen IA, Osborn TG (2007) Radiotherapy for malignancy in patients with scleroderma: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 67:559–567. doi: 10.1016/j.ijrobp.2006.09.003 PubMedCrossRefGoogle Scholar
  54. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. doi: 10.1016/j.immuni.2010.05.007 PubMedCrossRefGoogle Scholar
  55. Gorshkova I et al (2012) Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. J Lipid Res 53:1553–1568. doi: 10.1194/jlr.M026039 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Gorshkova IA et al (2013) Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. Life Sci 93:359–366. doi: 10.1016/j.lfs.2013.07.017 PubMedCrossRefGoogle Scholar
  57. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329PubMedCrossRefGoogle Scholar
  58. Grandi G, Silva ML, Streit C, Wagner JC (2007) A mobilization regimen to prevent mandibular hypomobility in irradiated patients: an analysis and comparison of two techniques. Med Oral Patol Oral Cir Bucal 12:E105–E109PubMedGoogle Scholar
  59. Greenberger JS, Epperly MW (2007) Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization In vivo 21:141–146PubMedGoogle Scholar
  60. Gross NJ (1977) Pulmonary effects of radiation therapy. Ann Intern Med 86:81–92PubMedCrossRefGoogle Scholar
  61. Gupta T et al (2012) Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiother Oncol J Eur Soc Ther Radiol Oncol 104:343–348. doi: 10.1016/j.radonc.2012.07.001 CrossRefGoogle Scholar
  62. Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94:733–741PubMedCrossRefGoogle Scholar
  63. Harrison JD, Stather JW (1996) The assessment of doses and effects from intakes of radioactive particles. J Anat 189(Pt 3):521–530PubMedCentralPubMedGoogle Scholar
  64. Hartl DM, Cohen M, Julieron M, Marandas P, Janot F, Bourhis J (2008) Botulinum toxin for radiation-induced facial pain and trismus. Otolaryngol Head Neck Surg 138:459–463. doi: 10.1016/j.otohns.2007.12.021 PubMedCrossRefGoogle Scholar
  65. Haston CK, Travis EL (1997) Murine susceptibility to radiation-induced pulmonary fibrosis is influenced by a genetic factor implicated in susceptibility to bleomycin-induced pulmonary fibrosis. Cancer Res 57:5286–5291PubMedGoogle Scholar
  66. Haston CK et al (2002) Universal and radiation-specific loci influence murine susceptibility to radiation-induced pulmonary fibrosis. Cancer Res 62:3782–3788PubMedGoogle Scholar
  67. Haston CK, Begin M, Dorion G, Cory SM (2007) Distinct loci influence radiation-induced alveolitis from fibrosing alveolitis in the mouse. Cancer Res 67:10796–10803. doi: 10.1158/0008-5472.CAN-07-2733 PubMedCrossRefGoogle Scholar
  68. Holscher T, Bentzen SM, Baumann M (2006) Influence of connective tissue diseases on the expression of radiation side effects: a systematic review. Radiother Oncol J Eur Soc Ther Radiol Oncol 78:123–130. doi: 10.1016/j.radonc.2005.12.013 CrossRefGoogle Scholar
  69. Horton JA et al (2013a) Inhibition of radiation-induced skin fibrosis with imatinib. Int J Radiat Biol 89:162–170. doi: 10.3109/09553002.2013.741281 PubMedCrossRefGoogle Scholar
  70. Horton JA, Hudak KE, Chung EJ, White AO, Scroggins BT, Burkeen JF, Citrin DE (2013b) Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells 31:2231–2241. doi: 10.1002/stem.1483 PubMedCrossRefGoogle Scholar
  71. Horton JA et al (2013c) Quercetin inhibits radiation-induced skin fibrosis. Radiat Res 180:205–215. doi: 10.1667/RR3237.1 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Iwakawa M et al (2004) Strain dependent differences in a histological study of CD44 and collagen fibers with an expression analysis of inflammatory response-related genes in irradiated murine lung. J Radiat Res 45:423–433PubMedCrossRefGoogle Scholar
  73. Jacobson G, Bhatia S, Smith BJ, Button AM, Bodeker K, Buatti J (2013) Randomized trial of pentoxifylline and vitamin E vs standard follow-up after breast irradiation to prevent breast fibrosis, evaluated by tissue compliance meter. Int J Radiat Oncol Biol Phys 85:604–608. doi: 10.1016/j.ijrobp.2012.06.042 PubMedCrossRefGoogle Scholar
  74. Ji Y (2013) Efficiency study for acute radiation-induced and chemotherapy-induced pulmonary fibrosis with bevasizumab. Accessed 23 Oct 2014
  75. Jiang ZQ et al (2012) Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys 83:332–339. doi: 10.1016/j.ijrobp.2011.06.1963 PubMedCrossRefGoogle Scholar
  76. Johansson S, Svensson H, Denekamp J (2002) Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys 52:1207–1219PubMedCrossRefGoogle Scholar
  77. Jones HA et al (2006) Preliminary investigation of symptom distress in the head and neck patient population: validation of a measurement instrument. Am J Clin Oncol 29:158–162. doi: 10.1097/01.coc.0000207424.62275.9d PubMedCrossRefGoogle Scholar
  78. Kamstra JI, Roodenburg JL, Beurskens CH, Reintsema H, Dijkstra PU (2013) TheraBite exercises to treat trismus secondary to head and neck cancer. Support Care Cancer 21:951–957. doi: 10.1007/s00520-012-1610-9 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Khan MA, Van Dyk J, Yeung IW, Hill RP (2003) Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol J Eur Soc Ther Radiol Oncol 66:95–102CrossRefGoogle Scholar
  80. Kirwan JM, Symonds P, Green JA, Tierney J, Collingwood M, Williams CJ (2003) A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 68:217–226CrossRefGoogle Scholar
  81. Lee JW et al (2010) Inhibition of Smad3 expression in radiation-induced fibrosis using a novel method for topical transcutaneous gene therapy. Arch Otolaryngol Head Neck Surg 136:714–719. doi: 10.1001/archoto.2010.107 PubMedCrossRefGoogle Scholar
  82. Lefaix JL, Daburon F (1998) Diagnosis of acute localized irradiation lesions: review of the French experimental experience. Health Phys 75:375–384PubMedCrossRefGoogle Scholar
  83. Lemos QT, Andrade ZA (2010) Angiogenesis and experimental hepatic fibrosis. Mem Inst Oswaldo Cruz 105:611–614PubMedCrossRefGoogle Scholar
  84. Leung SF, Zheng Y, Choi CY, Mak SS, Chiu SK, Zee B, Mak AF (2002) Quantitative measurement of post-irradiation neck fibrosis based on the young modulus: description of a new method and clinical results. Cancer 95:656–662. doi: 10.1002/cncr.10700 PubMedCrossRefGoogle Scholar
  85. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146. doi: 10.1146/annurev.immunol.24.021605.090737 PubMedCrossRefGoogle Scholar
  86. Li M, Jendrossek V, Belka C (2007) The role of PDGF in radiation oncology. Radiat Oncol 2:5. doi: 10.1186/1748-717X-2-5 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Machtay M et al (2008) Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol 26:3582–3589. doi: 10.1200/JCO.2007.14.8841 PubMedCrossRefGoogle Scholar
  88. Madani I, De Ruyck K, Goeminne H, De Neve W, Thierens H, Van Meerbeeck J (2007) Predicting risk of radiation-induced lung injury. J Thorac Oncol 2:864–874. doi: 10.1097/JTO.0b013e318145b2c6 PubMedCrossRefGoogle Scholar
  89. Marks LB, Carroll PR, Dugan TC, Anscher MS (1995) The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 31:1257–1280. doi: 10.1016/0360-3016(94)00431-j PubMedCrossRefGoogle Scholar
  90. Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290PubMedCrossRefGoogle Scholar
  91. Mathew M, Thomas SM (2012) The cellular microenvironment of head and neck squamous cell carcinoma. In: Li X (ed) Squamous cell carcinoma. InTech, pp 163–174. doi: 10.5772/25652
  92. Mathew B et al (2011) Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression. Am J Respir Cell Mol Biol 44:415–422. doi: 10.1165/rcmb.2010-0122OC PubMedCentralPubMedCrossRefGoogle Scholar
  93. Melchers LJ, Van Weert E, Beurskens CH, Reintsema H, Slagter AP, Roodenburg JL, Dijkstra PU (2009) Exercise adherence in patients with trismus due to head and neck oncology: a qualitative study into the use of the Therabite. Int J Oral Maxillofac Surg 38:947–954. doi: 10.1016/j.ijom.2009.04.003 PubMedCrossRefGoogle Scholar
  94. Olman MA, White KE, Ware LB, Cross MT, Zhu S, Matthay MA (2002) Microarray analysis indicates that pulmonary edema fluid from patients with acute lung injury mediates inflammation, mitogen gene expression, and fibroblast proliferation through bioactive interleukin-1. Chest 121:69S–70SPubMedCrossRefGoogle Scholar
  95. Otón C (2013) Treatment of Radiation-induced Fibrosis in the Upper Aerodigestive Tract Cancer by a Combination of Pentoxifylline-tocopherol and Hyperbaric Oxygen (ORT-OXI-2009). Accessed 23 Oct 2014
  96. Pardo A, Selman M (2006) Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proceedings of the American Thoracic Society 3:383–388. doi: 10.1513/pats.200601-012TK PubMedCrossRefGoogle Scholar
  97. Porter DW et al (2002) Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhalation Toxicol 14:349–367. doi: 10.1080/08958370252870998 CrossRefGoogle Scholar
  98. Potter R, Knocke TH, Fellner C, Baldass M, Reinthaller A, Kucera H (2000) Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993-1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother 4:159–172. doi: 10.1016/s1278-3218(00)88900-3 PubMedCrossRefGoogle Scholar
  99. Puthawala K et al (2008) Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 177:82–90. doi: 10.1164/rccm.200706-806OC PubMedCentralPubMedCrossRefGoogle Scholar
  100. Quarmby S, Kumar P, Wang J, Macro JA, Hutchinson JJ, Hunter RD, Kumar S (1999) Irradiation induces upregulation of CD31 in human endothelial cells. Arterioscler Thromb Vasc Biol 19:588–597PubMedCrossRefGoogle Scholar
  101. Radiation Therapy Oncology Group (2014) Cooperative group common toxicity criteria. Accessed 23 Oct 2014
  102. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol J Eur Soc Ther Radiol Oncol 35:83–90CrossRefGoogle Scholar
  103. Rosenthal DI, Lewin JS, Eisbruch A (2006) Prevention and treatment of dysphagia and aspiration after chemoradiation for head and neck cancer. J Clin Oncol 24:2636–2643. doi: 10.1200/JCO.2006.06.0079 PubMedCrossRefGoogle Scholar
  104. Rudolph R, Vande Berg J, Schneider JA, Fisher JC, Poolman WL (1988) Slowed growth of cultured fibroblasts from human radiation wounds. Plast Reconstr Surg 82:669–677PubMedCrossRefGoogle Scholar
  105. Sciubba JJ, Goldenberg D (2006) Oral complications of radiotherapy. Lancet Oncol 7:175–183. doi: 10.1016/S1470-2045(06)70580-0 PubMedCrossRefGoogle Scholar
  106. Sedgwick JB, Menon I, Gern JE, Busse WW (2002) Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol 110:752–756PubMedCrossRefGoogle Scholar
  107. Sharplin J, Franko AJ (1989) A quantitative histological study of strain-dependent differences in the effects of irradiation on mouse lung during the early phase. Radiat Res 119:1–14PubMedCrossRefGoogle Scholar
  108. Shu HK et al (2013) Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis. PLoS ONE 8:e79768. doi: 10.1371/journal.pone.0079768 PubMedCentralPubMedCrossRefGoogle Scholar
  109. Shulman DH, Shipman B, Willis FB (2008) Treating trismus with dynamic splinting: a cohort, case series. Adv Ther 25:9–16. doi: 10.1007/s12325-008-0007-0 PubMedCrossRefGoogle Scholar
  110. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122:787–795. doi: 10.1172/JCI59643 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Sonis ST, Fey EG (2002) Oral complications of cancer therapy Oncology (Williston Park, NY) 16:680–686; discussion 686, 691–682, 695Google Scholar
  112. Spanos W (2013) Study of topical superoxide dismutase to treat radiation induced fibrosis (Sodermix). Accessed 23 Oct 2014
  113. Stubblefield MD, Manfield L, Riedel ER (2010) A preliminary report on the efficacy of a dynamic jaw opening device (dynasplint trismus system) as part of the multimodal treatment of trismus in patients with head and neck cancer. Arch Phys Med Rehabil 91:1278–1282. doi: 10.1016/j.apmr.2010.05.010 PubMedCrossRefGoogle Scholar
  114. Suarez EM, Knackstedt RJ, Jenrette JM (2014) Significant fibrosis after radiation therapy in a patient with Marfan syndrome. Radiat Oncol J 32:208–212. doi: 10.3857/roj.2014.32.3.208 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Tak JK, Park JW (2009) The use of ebselen for radioprotection in cultured cells and mice. Free Radic Biol Med 46:1177–1185. doi: 10.1016/j.freeradbiomed.2009.01.023 PubMedCrossRefGoogle Scholar
  116. Terasaki Y et al (2011) Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. Am J Physiol Lung Cell Mol Physiol 301:L415–L426. doi: 10.1152/ajplung.00008.2011 PubMedCrossRefGoogle Scholar
  117. Toledano A et al (2006) Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys 65:324–332. doi: 10.1016/j.ijrobp.2005.12.020 PubMedCrossRefGoogle Scholar
  118. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363. doi: 10.1038/nrm809 PubMedCrossRefGoogle Scholar
  119. Toussaint O, Remacle J, Dierick JF, Pascal T, Frippiat C, Royer V, Chainiaux F (2002) Approach of evolutionary theories of ageing, stress, senescence-like phenotypes, calorie restriction and hormesis from the view point of far-from-equilibrium thermodynamics. Mech Ageing Dev 123:937–946PubMedCrossRefGoogle Scholar
  120. Travis EL (2001) Organizational response of normal tissues to irradiation. Seminars in radiation oncology 11:184–196PubMedCrossRefGoogle Scholar
  121. Vainshtein JM, Griffith KA, Feng FY, Vineberg KA, Chepeha DB, Eisbruch A (2014) Patient-reported voice and speech outcomes after whole-neck intensity modulated radiation therapy and chemotherapy for oropharyngeal cancer: prospective longitudinal study. Int J Radiat Oncol Biol Phys 89:973–980. doi: 10.1016/j.ijrobp.2014.03.013 PubMedCrossRefGoogle Scholar
  122. Varin A, Gordon S (2009) Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214:630–641. doi: 10.1016/j.imbio.2008.11.009 PubMedCrossRefGoogle Scholar
  123. Weigel C, Schmezer P, Plass C, Popanda O (2014) Epigenetics in radiation-induced fibrosis. Oncogene. doi: 10.1038/onc.2014.145 PubMedCentralGoogle Scholar
  124. Williams JP, Johnston CJ, Finkelstein JN (2010) Treatment for radiation-induced pulmonary late effects: spoiled for choice or looking in the wrong direction? Curr Drug Targets 11:1386–1394PubMedCentralPubMedCrossRefGoogle Scholar
  125. Xavier S et al (2004) Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 279:15167–15176. doi: 10.1074/jbc.M309798200 PubMedCrossRefGoogle Scholar
  126. Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol J Eur Soc Ther Radiol Oncol 97:149–161. doi: 10.1016/j.radonc.2010.09.002 CrossRefGoogle Scholar
  127. Zhang H et al (2011) The development of classically and alternatively activated macrophages has different effects on the varied stages of radiation-induced pulmonary injury in mice. J Radiat Res 52:717–726PubMedCrossRefGoogle Scholar
  128. Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16:130–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeffrey M. Straub
    • 1
  • Jacob New
    • 2
  • Chase D. Hamilton
    • 1
  • Chris Lominska
    • 3
  • Yelizaveta Shnayder
    • 1
  • Sufi M. Thomas
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of Otolaryngology-Head and Neck SurgeryUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Anatomy and Cell BiologyUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Radiation OncologyUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Department of Cancer BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations