Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 8, pp 1417–1425 | Cite as

Comparison of the expression levels of molecular markers among the peripheral area and central area of primary tumor and metastatic lymph node tumor in patients with squamous cell carcinoma of the lung

  • Hibiki Udagawa
  • Genichiro IshiiEmail author
  • Masahiro Morise
  • Shigeki Umemura
  • Shingo Matsumoto
  • Kiyotaka Yoh
  • Seiji Niho
  • Hironobu Ohmatsu
  • Masahiro Tsuboi
  • Koichi Goto
  • Atsushi Ochiai
  • Yuichiro Ohe
Original Article – Cancer Research

Abstract

Purpose

Immunohistochemical analysis for the identification of clinically relevant biomarkers is important. However, there have been no detailed reports about the heterogeneous expressions of the various markers in squamous cell carcinoma of the lung.

Methods

A total of 113 patients with squamous cell carcinoma of the lung with lymph node metastasis were included. The expression levels of 9 molecules (E-cadherin, S100A4, CD44, ALDH1, SOX2, EGFR, HER2, FGFR1 and VEGFR2) in the peripheral area and central area of primary tumor and metastatic lymph nodes were evaluated by immunohistochemistry. The differences in the staining scores of these molecules among the three areas were assessed. We also analyzed the relationships between the expression levels of these molecules and the recurrence-free survival.

Results

The E-cadherin expression was higher in the central area than in the peripheral area and metastatic lymph nodes (median staining score: 60 vs. 50, 30); the CD44 expression was higher in the central area than in the metastatic lymph nodes (117 vs. 90); and the EGFR expression was higher in the central area than in the peripheral area and metastatic lymph nodes (163 vs. 130, 110). Low CD44 expression in the central area, low EGFR expression in the peripheral area and high SOX2 expression in the metastatic lymph nodes were associated with a shorter recurrence-free survival (p < 0.01, p = 0.02, p = 0.03, respectively).

Conclusions

Our findings confirmed that some molecular markers exhibited different expression levels in anatomically different areas and suggested that area-by-area immunohistochemical analysis for biomarkers may provide useful information for more precise prediction of the recurrence.

Keywords

Squamous cell carcinoma Lung cancer Immunohistochemistry Heterogeneity Postoperative prognosis 

Notes

Acknowledgments

We thank Yuka Nakamura for her help with the immunohistochemical analyses in this study. This work was supported by the National Cancer Center Research and Development Fund (23-A-12), Foundation for the Promotion of Cancer Research, 3rd Term Comprehensive 10-Year Strategy for Cancer Control, Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation, and JSPS KAKENHI (24659185).

Conflict of interest

The authors have no conflict of interests to disclose.

Supplementary material

432_2015_1912_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)
432_2015_1912_MOESM2_ESM.tif (701 kb)
Supplementary material 2 (TIFF 701 kb)

References

  1. Andersson J, Linderholm B, Bergh J, Elmberger G (2004) HER-2/neu (c-erbB-2) evaluation in primary breast carcinoma by fluorescent in situ hybridization and immunohistochemistry with special focus on intratumor heterogeneity and comparison of invasive and in situ components. Appl Immunohistochem Mol Morphol 12:14–20PubMedCrossRefGoogle Scholar
  2. Bartis D, Mise N, Mahida RY, Eickelberg O, Thickett DR (2013) Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax. doi: 10.1136/thoraxjnl-2013-204608 PubMedGoogle Scholar
  3. Chen Y, Huang Y, Huang Y, Chen J, Wang S, Zhou J (2013) The prognostic value of SOX2 expression in non-small cell lung cancer: a meta-analysis. PLoS ONE 8:e71140. doi: 10.1371/journal.pone.0071140 PubMedPubMedCentralCrossRefGoogle Scholar
  4. De Marzo AM, Bradshaw C, Sauvageot J, Epstein JI, Miller GJ (1998) CD44 and CD44v6 downregulation in clinical prostatic carcinoma: relation to Gleason grade and cytoarchitecture. Prostate 34:162–168PubMedCrossRefGoogle Scholar
  5. de Melo Maia B et al (2014) EGFR expression in vulvar cancer: clinical implications and tumor heterogeneity. Hum Pathol 45:917–925. doi: 10.1016/j.humpath.2014.01.015 PubMedCrossRefGoogle Scholar
  6. Deeb G, Wang J, Ramnath N, Slocum HK, Wiseman S, Beck A, Tan D (2004) Altered E-cadherin and epidermal growth factor receptor expressions are associated with patient survival in lung cancer: a study utilizing high-density tissue microarray and immunohistochemistry. Mod Pathol 17:430–439. doi: 10.1038/modpathol.3800041 PubMedCrossRefGoogle Scholar
  7. Donovan CA et al (2013) Correlation of breast cancer axillary lymph node metastases with stem cell mutations. JAMA Surg 148:873–878. doi: 10.1001/jamasurg.2013.3028 PubMedCrossRefGoogle Scholar
  8. Elzagheid A et al (2006) E-cadherin expression pattern in primary colorectal carcinomas and their metastases reflects disease outcome. World J Gastroenterol 12:4304–4309PubMedPubMedCentralGoogle Scholar
  9. Friedrichs K et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55:5424–5433PubMedGoogle Scholar
  10. Funai K et al (2003) Clinicopathologic characteristics of peripheral squamous cell carcinoma of the lung. Am J Surg Pathol 27:978–984PubMedCrossRefGoogle Scholar
  11. Grob TJ et al (2013) Frequent intratumoral heterogeneity of EGFR gene copy gain in non-small cell lung cancer. Lung Cancer 79:221–227. doi: 10.1016/j.lungcan.2012.11.009 PubMedCrossRefGoogle Scholar
  12. Italiano A et al (2006) Comparison of the epidermal growth factor receptor gene and protein in primary non-small-cell-lung cancer and metastatic sites: implications for treatment with EGFR-inhibitors. Ann Oncol 17:981–985. doi: 10.1093/annonc/mdl038 PubMedCrossRefGoogle Scholar
  13. Jacobsen B et al (2013) Ly6/uPAR-related protein C4.4A as a marker of solid growth pattern and poor prognosis in lung adenocarcinoma. J Thorac Oncol 8:152–160. doi: 10.1097/JTO.0b013e318279d503 PubMedCrossRefGoogle Scholar
  14. Jakobsen JN, Santoni-Rugiu E, Sorensen JB (2014) Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer. Cancer Chemother Pharmacol 73:131–137. doi: 10.1007/s00280-013-2329-0 PubMedCrossRefGoogle Scholar
  15. Kirita K et al (2013) Identification of biological properties of intralymphatic tumor related to the development of lymph node metastasis in lung adenocarcinoma. PLoS ONE 8:e83537. doi: 10.1371/journal.pone.0083537 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kroepil F et al (2013) High EpCAM expression is linked to proliferation and lauren classification in gastric cancer. BMC Res Notes 6:253. doi: 10.1186/1756-0500-6-253 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lee SJ et al (2013) Combined aberrant expression of E-cadherin and S100A4, but not beta-catenin is associated with disease-free survival and overall survival in colorectal cancer patients. Diagn Pathol 8:99. doi: 10.1186/1746-1596-8-99 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117. doi: 10.1016/j.bbcan.2009.11.002 PubMedPubMedCentralGoogle Scholar
  19. Matsuwaki R et al (2014) Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma. Cancer Sci. doi: 10.1111/cas.12434 PubMedPubMedCentralGoogle Scholar
  20. Melchers LJ et al (2013) Lack of claudin-7 is a strong predictor of regional recurrence in oral and oropharyngeal squamous cell carcinoma. Oral Oncol 49:998–1005. doi: 10.1016/j.oraloncology.2013.07.008 PubMedCrossRefGoogle Scholar
  21. Nagatsuma AK, Aizawa M, Kuwata T, Doi T, Ohtsu A, Fujii H, Ochiai A (2014) Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer. doi: 10.1007/s10120-014-0360-4
  22. Neri S et al (2012) Recruitment of podoplanin positive cancer-associated fibroblasts in metastatic lymph nodes predicts poor prognosis in pathological N2 stage III lung adenocarcinoma. Ann Surg Oncol 19:3953–3962. doi: 10.1245/s10434-012-2421-4 PubMedCrossRefGoogle Scholar
  23. Oshiro R et al (2012) C4.4A is associated with tumor budding and epithelial-mesenchymal transition of colorectal cancer. Cancer Sci 103:1155–1164. doi: 10.1111/j.1349-7006.2012.02263.x PubMedCrossRefGoogle Scholar
  24. Pirker R et al (2012) EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 13:33–42. doi: 10.1016/s1470-2045(11)70318-7 PubMedCrossRefGoogle Scholar
  25. Scartozzi M, Bearzi I, Berardi R, Mandolesi A, Fabris G, Cascinu S (2004) Epidermal growth factor receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. J Clin Oncol 22:4772–4778. doi: 10.1200/JCO.2004.00.117 PubMedCrossRefGoogle Scholar
  26. Scartozzi M, Bearzi I, Berardi R, Mandolesi A, Pierantoni C, Cascinu S (2007) Epidermal growth factor receptor (EGFR) downstream signalling pathway in primary colorectal tumours and related metastatic sites: optimising EGFR-targeted treatment options. Br J Cancer 97:92–97. doi: 10.1038/sj.bjc.6603847 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Schneider J et al (1999) Histologic grade and CD44 are independent predictors of axillary lymph node invasion in early (T1) breast cancer. Tumour Biol 20:319–330PubMedCrossRefGoogle Scholar
  28. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. doi: 10.3322/caac.21166 PubMedCrossRefGoogle Scholar
  29. Sterlacci W, Savic S, Fiegl M, Obermann E, Tzankov A (2014) Putative stem cell markers in non-small-cell lung cancer: a clinicopathologic characterization. J Thorac Oncol 9:41–49. doi: 10.1097/jto.0000000000000021 PubMedCrossRefGoogle Scholar
  30. Wang X, Zhang J, Fan M, Zhou Q, Deng H, Aisharif MJ, Chen X (2009) The expression of E-cadherin at the invasive tumor front of oral squamous cell carcinoma: immunohistochemical and RT-PCR analysis with clinicopathological correlation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:547–554. doi: 10.1016/j.tripleo.2008.11.021 PubMedCrossRefGoogle Scholar
  31. Watanabe Y et al (2011) Alveolar space filling ratio as a favorable prognostic factor in small peripheral squamous cell carcinoma of the lung. Lung Cancer 73:217–221. doi: 10.1016/j.lungcan.2010.12.001 PubMedCrossRefGoogle Scholar
  32. Wen J, Luo KJ, Hu Y, Yang H, Fu JH (2013) Metastatic lymph node CHIP expression is a potential prognostic marker for resected esophageal squamous cell carcinoma patients. Ann Surg Oncol 20:1668–1675. doi: 10.1245/s10434-012-2733-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hibiki Udagawa
    • 1
    • 2
    • 5
  • Genichiro Ishii
    • 1
    Email author
  • Masahiro Morise
    • 2
  • Shigeki Umemura
    • 2
  • Shingo Matsumoto
    • 2
  • Kiyotaka Yoh
    • 2
  • Seiji Niho
    • 2
  • Hironobu Ohmatsu
    • 2
  • Masahiro Tsuboi
    • 4
  • Koichi Goto
    • 2
  • Atsushi Ochiai
    • 1
  • Yuichiro Ohe
    • 3
    • 5
  1. 1.Pathology Division, Department of Pathology, Research Center for Innovative OncologyNational Cancer Center Hospital EastKashiwaJapan
  2. 2.Department of Thoracic OncologyNational Cancer Center Hospital EastKashiwaJapan
  3. 3.Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
  4. 4.Department of Thoracic SurgeryNational Cancer Center Hospital EastKashiwaJapan
  5. 5.Advanced Clinical Research of CancerJuntendo University Graduate School of MedicineTokyoJapan

Personalised recommendations