Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 11, pp 1889–1897 | Cite as

Cervical cancer stem cells: opportunities and challenges

  • Ravindresh ChhabraEmail author
Review - Cancer Research



Cervical cancer remains a leading cause of cancer-related deaths in women in spite of screening and vaccination programs. The current treatment strategies including chemotherapy and surgery could only prolong the patient’s survival rather than provide a permanent cure. In case of advanced cervical cancer, radical surgery remains the only option which not only affects the child-bearing ability of the patient, but also comes with a continual risk of recurrence of the disease. Hence, there is a need to develop innovative therapeutics. The cancer stem cell hypothesis states that a tumor has a hierarchical cellular structure in which only a small subpopulation, referred to as cancer stem cells (CSCs), is capable of tumorigenesis. The CSCs possess the stem-like properties of self-renewal and can differentiate into non-stem tumor cells.


A large number of studies suggest that CSCs are resistant to the conventional therapies used for cancer treatment. These therapies rather enrich the proportion of CSCs in the tumor by eliminating non-stem tumor cells, thereby causing enhanced drug resistance resulting in relapse of the disease. This makes CSCs as the most likely targets for therapeutic intervention. Also, the increase in the proportion of CSCs in patient samples is associated with poor survival rate, thus highlighting their potential role as prognostic biomarker.


The CSCs have been identified and characterized in cervical cancer cell lines, but there are hardly any reports of CSCs in cervical cancer patient samples. This review highlights the current status of research on cervical CSCs, their clinical significance and the challenges in the field.


CSC Cancer therapeutics SOX2 CD49f 



This work was supported by the INSPIRE Faculty fellowship awarded to RC (Code- IFA12-LSBM-18) by Department of Science and Technology, India. The funding agency had no role in the writing of the manuscript and in the decision to submit the article for publication.

Conflict of interest

There is no conflict of interest.


  1. Akunuru S, James Zhai Q, Zheng Y (2012) Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis 3:e352. doi: 10.1038/cddis.2012.93 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737CrossRefPubMedGoogle Scholar
  4. Bortolomai I, Canevari S, Facetti I et al (2010) Tumor initiating cells: development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle 9:1194–1206. doi: 10.4161/cc.9.6.11108 CrossRefPubMedGoogle Scholar
  5. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. doi: 10.1016/j.cell.2005.08.020 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bracken AP, Dietrich N, Pasini D et al (2006) Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136. doi: 10.1101/gad.381706 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6:2332–2338. doi: 10.4161/cc.6.19.4914 CrossRefPubMedGoogle Scholar
  8. Castellsagué X, Muñoz N (2003) Chapter 3: Cofactors in human papillomavirus carcinogenesis–role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr 20–28Google Scholar
  9. Chaudary N, Pintilie M, Hedley D et al (2012) Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation. Cancer 118:3105–3115. doi: 10.1002/cncr.26635 CrossRefPubMedGoogle Scholar
  10. Cheng W, Liu T, Wan X et al (2012) MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J 279:2047–2059. doi: 10.1111/j.1742-4658.2012.08589.x CrossRefPubMedGoogle Scholar
  11. Chhabra R, Saini N (2014) microRNAs in cancer stem cells: current status and future directions. Tumour Biol 35:8395–8405. doi: 10.1007/s13277-014-2264-7 CrossRefPubMedGoogle Scholar
  12. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951. doi: 10.1158/0008-5472.CAN-05-2018 CrossRefPubMedGoogle Scholar
  13. Crum CP, McKeon FD (2010) p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 5:349–371. doi: 10.1146/annurev-pathol-121808-102117 CrossRefPubMedGoogle Scholar
  14. Dalerba P, Cho RW, Clarke MF (2007a) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  15. Dalerba P, Dylla SJ, Park I-K et al (2007b) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163CrossRefPubMedCentralPubMedGoogle Scholar
  16. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284CrossRefPubMedGoogle Scholar
  17. Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270. doi: 10.1101/gad.1061803 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Endo K, Terada T (2000) Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 32:78–84. doi: 10.1016/S0168-8278(00)80192-0 CrossRefPubMedGoogle Scholar
  19. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M PD, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. 11 [Internet]. Lyon, Fr Int Agency Res Cancer 11. http://globocan.iarc.f
  20. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. doi: 10.1016/j.stem.2007.08.014 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Golebiewska A, Brons NHC, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8:136–147CrossRefPubMedGoogle Scholar
  22. Govan VA (2008) A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil). Ther Clin Risk Manag 4:65–70PubMedCentralPubMedGoogle Scholar
  23. Gu W, Yeo E, McMillan N, Yu C (2011) Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther 18:897–905. doi: 10.1038/cgt.2011.58 CrossRefPubMedGoogle Scholar
  24. Guenin S, Mouallif M, Deplus R et al (2012) Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One. doi: 10.1371/journal.pone.0042704 PubMedCentralPubMedGoogle Scholar
  25. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012. doi: 10.1038/nm0909-1010 CrossRefPubMedGoogle Scholar
  26. Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644. doi: 10.1016/j.cell.2011.07.026 CrossRefPubMedGoogle Scholar
  27. Hanahan D (2000) The Hallmarks of Cancer. Cell 100:57–70. doi: 10.1016/S0092-8674(00)81683-9 CrossRefPubMedGoogle Scholar
  28. Henry JC, Park J-K, Jiang J et al (2010) miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 403:120–125. doi: 10.1016/j.bbrc.2010.10.130 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Herfs M, Yamamoto Y, Laury A et al (2012) A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci 109:10516–10521. doi: 10.1073/pnas.1202684109 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Higgins C (2012) Understanding laboratory investigations: A guide for nurses, midwives and health professionals,  3rd edn. Wiley-Blackwell, ISBN: 978-0-470-65951-9Google Scholar
  31. Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389CrossRefPubMedCentralPubMedGoogle Scholar
  32. Ji J, Zheng PS (2010) Expression of Sox2 in human cervical carcinogenesis. Hum Pathol 41:1438–1447. doi: 10.1016/j.humpath.2009.11.021 CrossRefPubMedGoogle Scholar
  33. Jordan CT (2009) Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4:203–205. doi: 10.1016/j.stem.2009.02.003 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Karjane N, Chelmow D (2013) New cervical cancer screening guidelines, again. Obstet Gynecol Clin N Am 40:211–223. doi: 10.1016/j.ogc.2013.03.001 CrossRefGoogle Scholar
  35. Kryczek I, Liu S, Roh M et al (2012) Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 130:29–39. doi: 10.1002/ijc.25967 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Lalande ME, Miller RG (1979) Fluorescence flow analysis of lymphocyte activation using Hoechst 33342 dye. J Histochem Cytochem 27:394–397. doi: 10.1177/27.1.86569 CrossRefPubMedGoogle Scholar
  37. Landen CN, Goodman B, Katre AA et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9:3186–3199. doi: 10.1158/1535-7163.MCT-10-0563 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631. doi: 10.1146/annurev.cellbio.21.012704.131525 CrossRefPubMedGoogle Scholar
  39. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030 CrossRefPubMedGoogle Scholar
  40. Liu S, Zheng P (2013) High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget 4(12):2462–2475PubMedCentralPubMedGoogle Scholar
  41. Liu X-F, Yang W-T, Xu R et al (2014) Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One 9:e87092. doi: 10.1371/journal.pone.0087092 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Liu J, Cao X-C, Xiao Q, Quan M-F (2015) Apigenin inhibits HeLa sphere–forming cells through inactivation of casein kinase 2α. Mol Med Rep 11:665–669. doi: 10.3892/mmr.2014.2720 PubMedGoogle Scholar
  43. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699. doi: 10.1146/annurev.cellbio.22.010305.104154 CrossRefPubMedGoogle Scholar
  44. López J, Poitevin A, Mendoza-Martínez V et al (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48. doi: 10.1186/1471-2407-12-48 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Lu J-W, Chang J-G, Yeh K-T et al (2011) Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem 113:833–838. doi: 10.1016/j.acthis.2011.01.001 CrossRefPubMedGoogle Scholar
  46. Maliekal TT, Bajaj J, Giri V et al (2008) The role of Notch signaling in human cervical cancer: implications for solid tumors. Oncogene 27:5110–5114. doi: 10.1038/onc.2008.224 CrossRefPubMedGoogle Scholar
  47. Meng E, Long B, Sullivan P et al (2012) CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis. doi: 10.1007/s10585-012-9482-4 PubMedGoogle Scholar
  48. Min L, Dong-Xiang S, Xiao-Tong G et al (2011) Clinicopathological and prognostic significance of Bmi-1 expression in human cervical cancer. Acta Obstet Gynecol Scand 90:737–745. doi: 10.1111/j.1600-0412.2011.01102.x CrossRefPubMedGoogle Scholar
  49. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi: 10.1038/nature05372 CrossRefPubMedGoogle Scholar
  50. Organista-Nava J, Gómez-Gómez Y, Gariglio P (2014) Embryonic stem cell-specific signature in cervical cancer. Tumor Biol 35:1727–1738. doi: 10.1007/s13277-013-1321-y CrossRefGoogle Scholar
  51. Pomfret TC, Gagnon JM, Gilchrist AT (2011) Quadrivalent human papillomavirus (HPV) vaccine: a review of safety, efficacy, and pharmacoeconomics. J Clin Pharm Ther 36:1–9. doi: 10.1111/j.1365-2710.2009.01150.x CrossRefPubMedGoogle Scholar
  52. Qi W, Zhao C, Zhao L et al (2014) Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int 14:3. doi: 10.1186/1475-2867-14-3 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Quade BJ, Yang A, Wang Y et al (2001) Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol Oncol 80:24–29. doi: 10.1006/gyno.2000.5953 CrossRefPubMedGoogle Scholar
  54. Rao Q-X, Yao T-T, Zhang B-Z et al (2012) Expression and functional role of ALDH1 in cervical carcinoma cells. Asian Pac J Cancer Prev 13:1325–1331CrossRefPubMedGoogle Scholar
  55. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi: 10.1038/35102167 CrossRefPubMedGoogle Scholar
  56. Rogers LJ, Eva LJ, Luesley DM (2008) Vaccines against cervical cancer. Curr Opin Oncol 20:570–574. doi: 10.1517/14712598.4.11.1803 CrossRefPubMedGoogle Scholar
  57. Samarzija I, Beard P (2012) Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration. Biochem Biophys Res Commun 425:64–69. doi: 10.1016/j.bbrc.2012.07.051 CrossRefPubMedGoogle Scholar
  58. Sasaki A, Kamiyama T, Yokoo H et al (2010) Cytoplasmic expression of CD133 is an important risk factor for overall survival in hepatocellular carcinoma. Oncol Rep 24:537–546. doi: 10.3892/or_00000890 CrossRefPubMedGoogle Scholar
  59. Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176:2584–2594. doi: 10.2353/ajpath.2010.091064 CrossRefPubMedCentralPubMedGoogle Scholar
  60. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828. doi: 10.1038/nature03128 PubMedGoogle Scholar
  61. Song B, Wang Y, Xi Y et al (2009) Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28:4065–4074CrossRefPubMedCentralPubMedGoogle Scholar
  62. Song B, Wang Y, Titmus MA et al (2010) Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 9:96CrossRefPubMedCentralPubMedGoogle Scholar
  63. Sullivan JP, Spinola M, Dodge M et al (2010) Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 70:9937–9948. doi: 10.1158/0008-5472.CAN-10-0881 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  65. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  66. Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16:3106–3112. doi: 10.1158/1078-0432.CCR-09-2934 CrossRefPubMedGoogle Scholar
  67. Thomas M, Narayan N, Pim D et al (2008) Human papillomaviruses, cervical cancer and cell polarity. Oncogene 27:7018–7030. doi: 10.1038/onc.2008.351 CrossRefPubMedGoogle Scholar
  68. Tong YQ, Liu B, Zheng HY et al (2012) Overexpression of BMI-1 is associated with poor prognosis in cervical cancer. Asia Pac J Clin Oncol. doi: 10.1111/j.1743-7563.2012.01564.x Google Scholar
  69. Ucar D, Cogle CR, Zucali JR et al (2009) Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Interact 178:48–55CrossRefGoogle Scholar
  70. Uren A, Fallen S, Yuan H et al (2005) Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res 65:6199–6206. doi: 10.1158/0008-5472.CAN-05-0455 CrossRefPubMedGoogle Scholar
  71. Van den Hoogen C, van der Horst G, Cheung H et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173. doi: 10.1158/0008-5472.CAN-09-3806 CrossRefPubMedGoogle Scholar
  72. Van Rhenen A, Feller N, Kelder A et al (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11:6520–6527. doi: 10.1158/1078-0432.CCR-05-0468 CrossRefPubMedGoogle Scholar
  73. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12:AID-PATH431>3.0.CO;2-F CrossRefPubMedGoogle Scholar
  74. Wang K, Zeng J, Luo L et al (2013a) Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line. Oncol Lett 6:1673–1680. doi: 10.3892/ol.2013.1607 PubMedCentralPubMedGoogle Scholar
  75. Wang L, Guo H, Yang L et al (2013b) Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol Cell Biochem 379:7–18. doi: 10.1007/s11010-013-1621-y CrossRefPubMedGoogle Scholar
  76. Wang P, Gao Q, Suo Z et al (2013c) Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8:e57020. doi: 10.1371/journal.pone.0057020 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Wang Y-D, Cai N, Wu X-L et al (2013d) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4:e760. doi: 10.1038/cddis.2013.272 CrossRefPubMedCentralPubMedGoogle Scholar
  78. Wang D, Upadhyaya B, Liu Y et al (2014) Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer 14:591. doi: 10.1186/1471-2407-14-591 CrossRefPubMedCentralPubMedGoogle Scholar
  79. Wu XL, Zheng PS (2013) Undifferentiated embryonic cell transcription factor-1 (UTF1) inhibits the growth of cervical cancer cells by transactivating p27kip1. Carcinogenesis 34:1660–1668. doi: 10.1093/carcin/bgt102 CrossRefPubMedGoogle Scholar
  80. Yang WT, Zheng PS (2012) Kruppel-like factor 4 functions as a tumor suppressor in cervical carcinoma. Cancer 118:3691–3702. doi: 10.1002/cncr.26698 CrossRefPubMedGoogle Scholar
  81. Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166. doi: 10.1016/j.ccr.2008.01.013 CrossRefPubMedGoogle Scholar
  82. Yang Y, Wang Y, Yin C, Li X (2014a) Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumour Biol 35:5339–5345. doi: 10.1007/s13277-014-1696-4 CrossRefPubMedGoogle Scholar
  83. Yang Z, Pan X, Gao A, Zhu W (2014b) Expression of Sox2 in cervical squamous cell carcinoma. J BUON 19:203–206PubMedGoogle Scholar
  84. Yao T, Chen Q, Zhang B et al (2011) The expression of ALDH1 in cervical carcinoma. Med Sci Monit 17:HY21–HY26CrossRefPubMedCentralPubMedGoogle Scholar
  85. Zeppernick F, Ahmadi R, Campos B et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129. doi: 10.1158/1078-0432.CCR-07-0932 CrossRefPubMedGoogle Scholar
  86. Zhang X, Wang C-X, Zhu C et al (2010) Overexpression of Bmi-1 in uterine cervical cancer: correlation with clinicopathology and prognosis. Int J Gynecol Cancer 20:1597–1603. doi: 10.1111/IGC.0b013e3181fd080e CrossRefPubMedGoogle Scholar
  87. Zhang S-L, Wang Y-S, Zhou T et al (2012) Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology 64:477–484. doi: 10.1007/s10616-012-9436-3 CrossRefPubMedCentralPubMedGoogle Scholar
  88. Zhu Z, Hao X, Yan M et al (2010) Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 126:2067–2078. doi: 10.1002/ijc.24868 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations