Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 6, pp 1049–1061 | Cite as

In vitro effects and ex vivo binding of an EGFR-specific immunotoxin on rhabdomyosarcoma cells

  • Judith Niesen
  • Hannes Brehm
  • Christoph Stein
  • Nina Berges
  • Alessa Pardo
  • Rainer Fischer
  • Andre ten Haaf
  • Stefan Gattenlöhner
  • Mehmet K. Tur
  • Stefan Barth
Original Article – Cancer Research



Rhabdomyosarcoma (RMS) is a rare and aggressive soft tissue sarcoma with limited treatment options and a high failure rate during standard therapy. New therapeutic strategies based on targeted immunotherapy are therefore much in demand. The epidermal growth factor receptor (EGFR) has all the characteristics of an ideal target. It is overexpressed in up to 80 % of embryonal RMS and up to 50 % of alveolar RMS tumors. We therefore tested the activity of the EGFR-specific recombinant immunotoxin (IT) 425(scFv)-ETA′ against EGFR+ RMS cells in vitro and ex vivo.


We tested the specific binding and internalization behavior of 425(scFv)-ETA′ in RMS cell lines in vitro by flow cytometry, compared to the corresponding imaging probe 425(scFv)-SNAP monitored by live cell imaging. The cytotoxic activity of 425(scFv)-ETA′ was tested using cell viability and apoptosis assays. Specific binding of the IT was confirmed on formalin-fixed paraffin-embedded tissue samples from two RMS patients.


We confirmed the specific binding of 425(scFv)-ETA′ to RMS cells in vitro and ex vivo. Both the IT and the corresponding imaging probe were rapidly internalized. The IT killed EGFR+ RMS cells in a dose-dependent manner, while showing no effect against control cells. It showed specific apoptotic activity against one selected RMS cell line.


This is the first study showing the promising therapeutic potential of a recombinant, EGFR-targeting, ETA′-based IT on RMS cells. We confirmed the selective killing with IC50 values of up to 50 pM, and immunohistochemical staining confirmed the specific ex vivo binding to primary RMS material.


Immunotoxin EGFR scFv Rhabdomyosarcoma Pseudomonas exotoxin A 



Christoph Stein was supported by the INTERREG IV A project Microbiomed. We would like to thank Radoslav Mladenov for his help with the tissue sections. We thank Dr. Agnieszka Weinandy (University Hospital Aachen, Neurosurgery Clinic, Aachen, Germany) for providing cetuximab, and we also thank Dr. Richard M. Twyman for the critical reading of the manuscript.

Conflict of interest


Ethical standard

Primary tissue samples were obtained during routine clinical practice at the University Hospital Giessen approved by the appropriate ethics committee, in accordance with the principles and the ethical standards of the Declaration of Helsinki.


  1. Abraham J et al (2011) Preclinical testing of erlotinib in a transgenic alveolar rhabdomyosarcoma mouse model. Sarcoma 2011:130484. doi: 10.1155/2011/130484 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol 2012:980250. doi: 10.1155/2012/980250 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763. doi: 10.1038/nrc903 CrossRefPubMedGoogle Scholar
  4. Amoury M et al (2013) SNAP-tag based agents for preclinical in vitro imaging in malignant diseases. Curr Pharm Des 19:5429–5436CrossRefPubMedGoogle Scholar
  5. Antignani A, Fitzgerald D (2013) Immunotoxins: the role of the toxin. Toxins 5:1486–1502. doi: 10.3390/toxins5081486 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Armistead PM et al (2007) Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients. Cancer 110:2293–2303. doi: 10.1002/cncr.23038 CrossRefPubMedGoogle Scholar
  7. Azemar M et al (2000) Recombinant antibody toxins specific for ErbB2 and EGF receptor inhibit the in vitro growth of human head and neck cancer cells and cause rapid tumor regression in vivo International journal of cancer. J Int Cancer 86:269–275CrossRefGoogle Scholar
  8. Bachran D et al (2010) Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells. Int J Cancer 127:1453–1461. doi: 10.1002/ijc.25123 CrossRefPubMedGoogle Scholar
  9. Barth S (2002) Technology evaluation: BL22. NCI current opinion in molecular therapeutics 4:72–75Google Scholar
  10. Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66:1572–1579CrossRefPubMedCentralPubMedGoogle Scholar
  11. Becker N, Benhar I (2012) Antibody-based immunotoxins for the treatment of cancer. Antibodies 1:39–69. doi: 10.3390/antib1010039 CrossRefGoogle Scholar
  12. Biberacher V et al (2012) The cytotoxicity of anti-CD22 immunotoxin is enhanced by bryostatin 1 in B-cell lymphomas through CD22 upregulation and PKC-betaII depletion. Haematologica 97:771–779. doi: 10.3324/haematol.2011.049155 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bisogno G et al (2012) Rhabdomyosarcoma in adolescents: a report from the AIEOP soft tissue sarcoma committee. Cancer 118:821–827. doi: 10.1002/cncr.26355 CrossRefPubMedGoogle Scholar
  14. Brehm H et al (2014) A CSPG4-specific immunotoxin kills rhabdomyosarcoma cells and binds to primary tumor tissues Cancer Lett. doi: 10.1016/j.canlet.2014.07.006
  15. Bruell D et al (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA′ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23:1179–1186PubMedGoogle Scholar
  16. Bruell D et al (2005) Recombinant anti-EGFR immunotoxin 425(scFv)-ETA′ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15:305–313PubMedGoogle Scholar
  17. Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM (2005) Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11:397–405PubMedGoogle Scholar
  18. Cen L et al (2007) Phosphorylation profiles of protein kinases in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 20:936–946. doi: 10.1038/modpathol.3800834 CrossRefPubMedGoogle Scholar
  19. Chandramohan V, Bigner D (2013) A novel recombinant immunotoxin-based therapy targeting wild-type and mutant EGFR improves survival in murine models of glioblastoma. OncoImmunology 2(12):e26852CrossRefPubMedCentralPubMedGoogle Scholar
  20. Chong CR, Janne PA (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389–1400. doi: 10.1038/nm.3388 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32:574–584. doi: 10.1097/CJI.0b013e3181a6981c CrossRefPubMedGoogle Scholar
  22. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42:225–241PubMedGoogle Scholar
  23. Davicioni E et al (2009) Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children’s Oncology Group. Am J Pathol 174:550–564. doi: 10.2353/ajpath.2009.080631 CrossRefPubMedCentralPubMedGoogle Scholar
  24. De Giovanni C et al (1996) Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells. Cancer Res 56:3898–3901PubMedGoogle Scholar
  25. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP (2010) Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Lett 584:3878–3884. doi: 10.1016/j.febslet.2010.08.005 CrossRefPubMedGoogle Scholar
  26. Ganti R et al (2006) Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol 19:1213–1220. doi: 10.1038/modpathol.3800636 CrossRefPubMedGoogle Scholar
  27. Gattenlohner S et al (2010) A human recombinant autoantibody-based immunotoxin specific for the fetal acetylcholine receptor inhibits rhabdomyosarcoma growth in vitro and in a murine transplantation model. J Biomed Biotechnol 2010:187621. doi: 10.1155/2010/187621 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ghetie MA, Tucker K, Richardson J, Uhr JW, Vitetta ES (1994) Eradication of minimal disease in severe combined immunodeficient mice with disseminated Daudi lymphoma using chemotherapy and an immunotoxin cocktail. Blood 84:702–707PubMedGoogle Scholar
  29. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  30. Hawkins DS, Gupta AA, Rudzinski ER (2014) What is new in the biology and treatment of pediatric rhabdomyosarcoma? Curr Opin Pediatr 26:50–56. doi: 10.1097/MOP.0000000000000041 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Hristodorov D et al (2013) Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer 109:1570–1578. doi: 10.1038/bjc.2013.457 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hussain AF, Amoury M, Barth S (2013) SNAP-tag technology: a powerful tool for site specific conjugation of therapeutic and imaging agents. Curr Pharm Des 19:5437–5442CrossRefPubMedGoogle Scholar
  33. Jain S, Xu R, Prieto VG, Lee P (2010) Molecular classification of soft tissue sarcomas and its clinical applications Int J. Clin Exp Pathol 3:416–428Google Scholar
  34. Kamat V et al (2008) Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol Ther 7:726–733CrossRefPubMedGoogle Scholar
  35. Kampmeier F, Ribbert M, Nachreiner T, Dembski S, Beaufils F, Brecht A, Barth S (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 20:1010–1015. doi: 10.1021/bc9000257 CrossRefPubMedGoogle Scholar
  36. Kampmeier F et al (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imaging 37:1926–1934. doi: 10.1007/s00259-010-1482-5 CrossRefPubMedGoogle Scholar
  37. Koefoed K et al (2011) Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. mAbs 3:584–595. doi: 10.4161/mabs.3.6.17955 CrossRefPubMedCentralPubMedGoogle Scholar
  38. Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS j 8:E532–E551. doi: 10.1208/aapsj080363 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  40. Mazzoleni S et al (2010) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70:7500–7513. doi: 10.1158/0008-5472.can-10-2353 CrossRefPubMedGoogle Scholar
  41. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20:1s–13sPubMedGoogle Scholar
  42. Missiaglia E et al (2012) PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol 30:1670–1677. doi: 10.1200/jco.2011.38.5591 CrossRefPubMedGoogle Scholar
  43. Muller KM, Arndt KM, Strittmatter W, Pluckthun A (1998) The first constant domain (C(H)1 and C(L)) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett 422:259–264CrossRefPubMedGoogle Scholar
  44. Murthy U, Basu A, Rodeck U, Herlyn M, Ross AH, Das M (1987) Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys 252:549–560CrossRefPubMedGoogle Scholar
  45. Pardo A, Stocker M, Kampmeier F, Melmer G, Fischer R, Thepen T, Barth S (2012) In vivo imaging of immunotoxin treatment using Katushka-transfected A-431 cells in a murine xenograft tumour model. Cancer Immunol Immunother 61:1617–1626. doi: 10.1007/s00262-012-1219-3 CrossRefPubMedGoogle Scholar
  46. Pastan I, FitzGerald D (1991) Recombinant toxins for cancer treatment. Science 254:1173–1177CrossRefPubMedGoogle Scholar
  47. Pastan I, Chaudhary V, FitzGerald DJ (1992) Recombinant toxins as novel therapeutic agents. Annu Rev Biochem 61:331–354. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  48. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  49. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70:588–597. doi: 10.1158/0008-5472.CAN-09-1417 CrossRefPubMedGoogle Scholar
  50. Ratti M, Tomasello G (2014) Emerging combination therapies to overcome resistance in EGFR-driven tumors. Anticancer Drugs 25:127–139. doi: 10.1097/cad.0000000000000035 CrossRefPubMedGoogle Scholar
  51. Ray A, Huh WW (2012) Current state-of-the-art systemic therapy for pediatric soft tissue sarcomas. Curr Oncol Rep 14:311–319. doi: 10.1007/s11912-012-0243-y CrossRefPubMedGoogle Scholar
  52. Ricci C et al (2002) HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother 25:314–323CrossRefPubMedGoogle Scholar
  53. Schiffer S et al (2013) Species-dependent functionality of the human cytolytic fusion proteins granzyme B-H22(scFv) and H22(scFv)-angiogenin in macrophages. Antibodies 2:9–18. doi: 10.3390/antib2010009 CrossRefGoogle Scholar
  54. Sequist LV, Lynch TJ (2008) EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annu Rev Med 59:429–442. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  55. Simon-Keller K, Barth S, Vincent A, Marx A (2013) Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opin Ther Targets 17:127–138. doi: 10.1517/14728222.2013.734500 CrossRefPubMedGoogle Scholar
  56. Singh R, Samant U, Hyland S, Chaudhari PR, Wels WS, Bandyopadhyay D (2007) Target-specific cytotoxic activity of recombinant immunotoxin scFv(MUC1)-ETA on breast carcinoma cells and primary breast tumors. Mol Cancer Ther 6:562–569. doi: 10.1158/1535-7163.MCT-06-0604 CrossRefPubMedGoogle Scholar
  57. Singh R, Zhang Y, Pastan I, Kreitman RJ (2012) Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res 18:152–160. doi: 10.1158/1078-0432.ccr-11-1839 CrossRefPubMedCentralPubMedGoogle Scholar
  58. Stahnke B et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924–2932. doi: 10.1158/1535-7163.MCT-08-0554 CrossRefPubMedGoogle Scholar
  59. Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219CrossRefPubMedGoogle Scholar
  60. Sumegi J, Streblow R, Frayer RW, Dal Cin P, Rosenberg A, Meloni-Ehrig A, Bridge JA (2010) Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosom Cancer 49:224–236. doi: 10.1002/gcc.20731 PubMedCentralPubMedGoogle Scholar
  61. Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13:663–673. doi: 10.1038/nrc3559 CrossRefPubMedGoogle Scholar
  62. Thorpe SJ, Turner C, Heath A, Feavers I, Vatn I, Natvig JB, Thompson KM (2003) Clonal analysis of a human antimouse antibody (HAMA) response. Scand J Immunol 57:85–92CrossRefPubMedGoogle Scholar
  63. Tur MK et al (2003) Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 63:8414–8419PubMedGoogle Scholar
  64. Wachtel M et al (2006) Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol 24:816–822. doi: 10.1200/jco.2005.03.4934 CrossRefPubMedGoogle Scholar
  65. Walter D et al (2011) CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres. PLoS ONE 6:e19506. doi: 10.1371/journal.pone.0019506 CrossRefPubMedCentralPubMedGoogle Scholar
  66. Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I (2014) Immunotoxins for leukemia. Blood 123:2470–2477. doi: 10.1182/blood-2014-01-492256 CrossRefPubMedCentralPubMedGoogle Scholar
  67. Wei BR, Ghetie MA, Vitetta ES (2000) The combined use of an immunotoxin and a radioimmunoconjugate to treat disseminated human B-cell lymphoma in immunodeficient mice. Clin Cancer Res 6:631–642PubMedGoogle Scholar
  68. Weidle UH, Tiefenthaler G, Schiller C, Weiss EH, Georges G, Brinkmann U (2014) Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics 11:25–38PubMedGoogle Scholar
  69. Weiss A, Gill J, Goldberg J, Lagmay J, Spraker-Perlman H, Venkatramani R, Reed D (2014) Advances in therapy for pediatric sarcomas. Curr Oncol Rep 16:395. doi: 10.1007/s11912-014-0395-z CrossRefPubMedGoogle Scholar
  70. Weldon JE, Pastan I (2011) A guide to taming a toxin–recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 278:4683–4700. doi: 10.1111/j.1742-4658.2011.08182.x CrossRefPubMedCentralPubMedGoogle Scholar
  71. Wels W et al (2004) Recombinant immunotoxins and retargeted killer cells: employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors. Cancer Immunol Immunother 53:217–226. doi: 10.1007/s00262-003-0482-8 CrossRefPubMedGoogle Scholar
  72. Williamson D et al (2010) Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28:2151–2158. doi: 10.1200/jco.2009.26.3814 CrossRefPubMedGoogle Scholar
  73. Yamamoto Y et al (2013) Cetuximab promotes anticancer drug toxicity in rhabdomyosarcomas with EGFR amplification in vitro. Oncol Rep 30:1081–1086. doi: 10.3892/or.2013.2588 PubMedGoogle Scholar
  74. Yewale C, Baradia D, Vhora I, Patil S, Misra A (2013) Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 34:8690–8707. doi: 10.1016/j.biomaterials.2013.07.100 CrossRefPubMedGoogle Scholar
  75. Yip WL, Weyergang A, Berg K, Tonnesen HH, Selbo PK (2007) Targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells. Mol Pharm 4:241–251. doi: 10.1021/mp060105u CrossRefPubMedGoogle Scholar
  76. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408PubMedGoogle Scholar
  77. Yun CH et al (2008) The T790 M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105:2070–2075. doi: 10.1073/pnas.0709662105 CrossRefPubMedCentralPubMedGoogle Scholar
  78. Zanola A, Rossi S, Faggi F, Monti E, Fanzani A (2012) Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 16:1377–1391. doi: 10.1111/j.1582-4934.2011.01518.x CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Judith Niesen
    • 2
  • Hannes Brehm
    • 1
  • Christoph Stein
    • 1
    • 2
  • Nina Berges
    • 1
  • Alessa Pardo
    • 1
  • Rainer Fischer
    • 2
    • 3
  • Andre ten Haaf
    • 4
  • Stefan Gattenlöhner
    • 4
  • Mehmet K. Tur
    • 4
  • Stefan Barth
    • 1
    • 2
  1. 1.Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical EngineeringUniversity Hospital RWTH AachenAachenGermany
  2. 2.Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  3. 3.Institute of Molecular Biotechnology (Biology VII)RWTH Aachen UniversityAachenGermany
  4. 4.Department of PathologyJustus-Liebig UniversityGiessenGermany

Personalised recommendations