The TRAIL system is over-expressed in breast cancer and FLIP a marker of good prognosis

  • Gustav J. Ullenhag
  • Ahmad Al-Attar
  • Abhik Mukherjee
  • Andrew R. Green
  • Ian O. Ellis
  • Lindy G. Durrant
Original Article – Clinical Oncology



Breast cancer is the most common cancer in women. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway transmits apoptotic signals. Novel anticancer agents that activate this system are in clinical development, including anti-breast cancer.


The tissue microarray technique was applied. We used an array of breast cancer tissues from a large group of patients (>800) to assess the protein expression of TRAIL-R1, TRAIL-R2, the long isoform of FLICE-inhibitory protein and total FLICE-inhibitory protein (FLIPL and FLIPT). Disease-free survival was examined by Kaplan–Meier estimates and the log-rank test. The independence of prognostic factors was determined by Cox multivariate analysis.


High intra-tumoral expression of all these proteins of the TRAIL pathway was found. The TRAIL receptors and FLIPL were not associated with survival. On univariate analysis, strong FLIPT expression was associated with a significantly better survival (p = 0.001). On multivariate analysis using the Cox proportional hazards model, FLIPT phenotype was significantly associated with a good prognosis in this series (HR 0.52, 95 % CI 0.35–0.78, p = 0.039). Results indicate that this association is valid for all the biological subtypes of breast cancer. The expression of FLIPT was especially high in the luminal subtype, known for its good prognosis.


These findings support the use of agonistic TRAIL antibodies and drugs targeting FLIP in breast cancer patients. Over-expression of FLIPT but not TRAIL-R1, TRAIL-R2 or FLIPL provides stage-independent prognostic information in breast cancer patients. This indicates a clinically less aggressive phenotype.


Breast cancer Tissue microarray Prognostic factor TRAIL-R FLIP 


  1. Aggarwal BB, Bhardwaj U, Takada Y (2004) Regulation of TRAIL-induced apoptosis by ectopic expression of antiapoptotic factors. Vitam Horm 67:453–483CrossRefPubMedGoogle Scholar
  2. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728. doi:10.1002/cncr.22618 CrossRefPubMedGoogle Scholar
  3. Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80(12):1943–1949CrossRefPubMedGoogle Scholar
  4. Cohn AL, Tabernero J, Maurel J, Nowara E, Sastre J, Chuah BY, Kopp MV, Sakaeva DD, Mitchell EP, Dubey S, Suzuki S, Hei YJ, Galimi F, McCaffery I, Pan Y, Loberg R, Cottrell S, Choo SP (2013) A randomized, placebo-controlled phase 2 study of ganitumab or conatumumab in combination with FOLFIRI for second-line treatment of mutant KRAS metastatic colorectal cancer. Ann Oncol 24(7):1777–1785. doi:10.1093/annonc/mdt057 CrossRefPubMedGoogle Scholar
  5. Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW (1992) Pathological prognostic factors in breast cancer. II. Histological type. Relationship with survival in a large study with long-term follow-up. Histopathology 20(6):479–489CrossRefPubMedGoogle Scholar
  6. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410CrossRefPubMedGoogle Scholar
  7. Elston CW, Ellis IO (2002) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 41(3A):151CrossRefPubMedGoogle Scholar
  8. Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, Luo FR, Wojtowicz-Praga S, Percent I, Saleh M (2010) Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 25(1):13–19. doi:10.1089/cbr.2009.0673 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The Nottingham prognostic index in primary breast cancer. Breast Cancer Res Treat 22(3):207–219CrossRefPubMedGoogle Scholar
  10. Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, Lo L, Gallant G, Klein J (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61(1):82–90. doi:10.1016/j.lungcan.2007.12.011 CrossRefPubMedGoogle Scholar
  11. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161(6):2833–2840PubMedGoogle Scholar
  12. Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L, Juan G, Hwang YC, Wong S, Hill JS, Friberg G, LoRusso PM (2010) A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res 16(23):5883–5891. doi:10.1158/1078-0432.CCR-10-0631 CrossRefPubMedGoogle Scholar
  13. Horak P, Pils D, Kaider A, Pinter A, Elandt K, Sax C, Zielinski CC, Horvat R, Zeillinger R, Reinthaller A, Krainer M (2005) Perturbation of the tumor necrosis factor–related apoptosis-inducing ligand cascade in ovarian cancer: overexpression of FLIPL and deregulation of the functional receptors DR4 and DR5. Clin Cancer Res 11(24 Pt 1):8585–8591CrossRefPubMedGoogle Scholar
  14. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195CrossRefPubMedGoogle Scholar
  15. Kim K, Fisher MJ, Xu SQ, el-Deiry WS (2000) Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6(2):335–346PubMedGoogle Scholar
  16. Kindler HL, Richards DA, Garbo LE, Garon EB, Stephenson JJ Jr, Rocha-Lima CM, Safran H, Chan D, Kocs DM, Galimi F, McGreivy J, Bray SL, Hei Y, Feigal EG, Loh E, Fuchs CS (2012) A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol 23(11):2834–2842. doi:10.1093/annonc/mds142 CrossRefPubMedGoogle Scholar
  17. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847CrossRefPubMedGoogle Scholar
  18. Lee SH, Kim HS, Kim SY, Lee YS, Park WS, Kim SH, Lee JY, Yoo NJ (2003) Increased expression of FLIP, an inhibitor of Fas-mediated apoptosis, in stomach cancer. Apmis 111(2):309–314CrossRefPubMedGoogle Scholar
  19. Leverkus M, Neumann M, Mengling T, Rauch CT, Brocker EB, Krammer PH, Walczak H (2000) Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 60(3):553–559PubMedGoogle Scholar
  20. Longley DB, Wilson TR, McEwan M, Allen WL, McDermott U, Galligan L, Johnston PG (2006) c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25(6):838–848CrossRefPubMedGoogle Scholar
  21. Madjd Z, Pinder SE, Paish C, Ellis IO, Carmichael J, Durrant LG (2003) Loss of CD59 expression in breast tumours correlates with poor survival. J Pathol 200(5):633–639CrossRefPubMedGoogle Scholar
  22. Madjd Z, Durrant LG, Bradley R, Spendlove I, Ellis IO, Pinder SE (2004) Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res 10(8):2797–2803CrossRefPubMedGoogle Scholar
  23. Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG (2005) Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer 117(2):248–255CrossRefPubMedGoogle Scholar
  24. Madjd Z, Spendlove I, Moss R, Bevin S, Pinder SE, Watson NF, Ellis I, Durrant LG (2007) Upregulation of MICA on high-grade invasive operable breast carcinoma. Cancer Immun 7:17PubMedCentralPubMedGoogle Scholar
  25. Malin D, Chen F, Schiller C, Koblinski J, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17(15):5005–5015. doi:10.1158/1078-0432.CCR-11-0099 CrossRefPubMedGoogle Scholar
  26. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, Yuan J, Gurney A, Goddard AD, Godowski P, Ashkenazi A (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7(12):1003–1006CrossRefPubMedGoogle Scholar
  27. McCarthy MM, Sznol M, DiVito KA, Camp RL, Rimm DL, Kluger HM (2005) Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11(14):5188–5194CrossRefPubMedGoogle Scholar
  28. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93(4):387–391. doi:10.1038/sj.bjc.6602678 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. doi:10.1158/1078-0432.CCR-04-0220 CrossRefPubMedGoogle Scholar
  30. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997a) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818CrossRefPubMedGoogle Scholar
  31. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997b) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113CrossRefPubMedGoogle Scholar
  32. Panner A, Murray JC, Berger MS, Pieper RO (2007) Heat shock protein 90alpha recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res 67(19):9482–9489. doi:10.1158/0008-5472.CAN-07-0569 CrossRefPubMedGoogle Scholar
  33. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2(9):533–543CrossRefPubMedGoogle Scholar
  34. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093 CrossRefPubMedGoogle Scholar
  35. Piggott L, Omidvar N, Perez SM, Eberl M, Clarkson RW (2011) Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL. Br Cancer Res BCR 13(5):R88. doi:10.1186/bcr2945 CrossRefGoogle Scholar
  36. Pinder SE, Ellis IO, Galea M, O’Rouke S, Blamey RW, Elston CW (1994) Pathological prognostic factors in breast cancer. III. Vascular invasion: relationship with recurrence and survival in a large study with long-term follow-up. Histopathology 24(1):41–47CrossRefPubMedGoogle Scholar
  37. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271(22):12687–12690CrossRefPubMedGoogle Scholar
  38. Rolland P, Spendlove I, Madjd Z, Rakha EA, Patel P, Ellis IO, Durrant L (2007) The p53 positive Bcl-2 negative phenotype is an independent marker of prognosis in breast cancer. Int J Cancer 120(6):1311–1317. doi:10.1002/ijc.22430 CrossRefPubMedGoogle Scholar
  39. Seal S, Hockenbery DM, Spaulding EY, Kiem HP, Abbassi N, Deeg HJ (2008) Differential responses of FLIPLong and FLIPShort-overexpressing human myeloid leukemia cells to TNF-alpha and TRAIL-initiated apoptotic signals. Exp Hematol 36(12):1660–1672. doi:10.1016/j.exphem.2008.07.012 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821CrossRefPubMedGoogle Scholar
  41. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Spierings DC, de Vries EG, Timens W, Groen HJ, Boezen HM, de Jong S (2003) Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res 9(9):3397–3405PubMedGoogle Scholar
  43. Strater J, Hinz U, Walczak H, Mechtersheimer G, Koretz K, Herfarth C, Moller P, Lehnert T (2002) Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8(12):3734–3740PubMedGoogle Scholar
  44. Todd JH, Dowle C, Williams MR, Elston CW, Ellis IO, Hinton CP, Blamey RW, Haybittle JL (1987) Confirmation of a prognostic index in primary breast cancer. Br J Cancer 56(4):489–492CrossRefPubMedCentralPubMedGoogle Scholar
  45. Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159(6):2249–2256CrossRefPubMedCentralPubMedGoogle Scholar
  46. Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, Sneller V, Gallant G, Kanzler S (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102(3):506–512. doi:10.1038/sj.bjc.6605507 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Troeger A, Schmitz I, Siepermann M, Glouchkova L, Gerdemann U, Janka-Schaub GE, Schulze-Osthoff K, Dilloo D (2007) Up-regulation of c-FLIPS + R upon CD40 stimulation is associated with inhibition of CD95-induced apoptosis in primary precursor B-ALL. Blood 110(1):384–387. doi:10.1182/blood-2006-08-038398 CrossRefPubMedGoogle Scholar
  48. Ullenhag GJ, Mukherjee A, Watson NF, Al-Attar AH, Scholefield JH, Durrant LG (2007) Overexpression of FLIPL is an independent marker of poor prognosis in colorectal cancer patients. Clin Cancer Res 13(17):5070–5075. doi:10.1158/1078-0432.CCR-06-2547 CrossRefPubMedGoogle Scholar
  49. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397CrossRefPubMedCentralPubMedGoogle Scholar
  50. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682CrossRefPubMedGoogle Scholar
  51. Wu Z, Roberts M, Porter M, Walker F, Wherry EJ, Kelly J, Gadina M, Silva EM, DosReis GA, Lopes MF, O’Shea J, Leonard WJ, Ahmed R, Siegel RM (2004) Viral FLIP impairs survival of activated T cells and generation of CD8+ T cell memory. J Immunol 172(10):6313–6323CrossRefPubMedGoogle Scholar
  52. Zhu W, Zhang H, Shi Y, Song M, Zhu B, Wei L (2013) Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 14(11):1016–1023CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gustav J. Ullenhag
    • 1
    • 2
  • Ahmad Al-Attar
    • 3
  • Abhik Mukherjee
    • 3
  • Andrew R. Green
    • 3
  • Ian O. Ellis
    • 3
  • Lindy G. Durrant
    • 3
  1. 1.Section of Oncology, Department of Radiology, Oncology and Radiation ScienceUppsala UniversityUppsalaSweden
  2. 2.Department of OncologyUppsala University HospitalUppsalaSweden
  3. 3.Academic Department of Clinical Oncology and HistopathologyNottingham University HospitalNottinghamUK

Personalised recommendations