Journal of Cancer Research and Clinical Oncology

, Volume 141, Issue 2, pp 189–201 | Cite as

The biological and clinical importance of epithelial–mesenchymal transition in circulating tumor cells

  • Huiying Liu
  • Xiaofeng Zhang
  • Jun Li
  • Bin Sun
  • Haihua Qian
  • Zhengfeng Yin
Review – Cancer Research


Movement of tumor cells from a primary tumor to a nonadjacent or distant site is a contiguous and complex process. Among the multiple natural cellular programs that promote initiation and progression of tumor metastasis, epithelial–mesenchymal transition (EMT) may play a key role in the ultimate generation of a metastatic foci. Acquisition of the EMT phenotype by tumor cells not only increases their migration and invasion potentials, thereby facilitating their ability to infiltrate blood vessels and to produce circulating tumor cells (CTCs), but also promotes survival of CTCs in the bloodstream and their ability to extravasate out of the circulatory system and invade proximal tissues. In organs distal to the primary tumor, the phenotypic switching mechanism of mesenchymal–epithelial transition (MET) enables CTCs to grow and colonize, enhancing the likelihood of establishing metastasis. In addition, CTCs that have undergone EMT attain increased resistance to chemotherapy and targeted therapy. CTCs with the EMT phenotype have become recognized as an active source of metastases, and targeting EMT/MET processes during the individual steps of tumor metastasis represents a promising new approach for alleviating cancer metastasis and recurrence. In this article, we focus on the biological and clinical importance of EMT and/or MET in CTCs during the individual steps of tumor metastasis, summarizing the recent findings of the regulatory roles played by EMT and/or MET in the generation, survival, and recolonization of CTCs and discussing the EMT-targeting strategies developed for tumor diagnosis as well as their potential for management of metastatic malignant diseases.


Epithelial–mesenchymal transition (EMT) Mesenchymal–epithelial transition (MET) Circulating tumor cells (CTCs) Metastasis 



This work was supported by Grants from the China National Key Projects for Infectious Disease (No. 2012ZX10002012-10), the National Nature Science Foundation of China (Nos. 81172207, 81272668, 81272669, and 81301830), and the National High-Tech Research and Development Program of China (No. 2007AA02Z461).

Conflict of interest

The authors declare no conflict of interest.


  1. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46PubMedCentralPubMedGoogle Scholar
  2. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, Maestro R, Voeltzel T, Selmi A, Valsesia-Wittmann S, de Fromentel CC, Puisieux A (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89PubMedGoogle Scholar
  3. Aokage K, Ishii G, Ohtaki Y, Yamaguchi Y, Hishida T, Yoshida J, Nishimura M, Nagai K, Ochiai A (2011) Dynamic molecular changes associated with epithelial–mesenchymal transition and subsequent mesenchymal–epithelial transition in the early phase of metastatic tumor formation. Int J Cancer 128:1585–1595PubMedGoogle Scholar
  4. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9:997–1007PubMedCentralPubMedGoogle Scholar
  5. Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, Gallick GE, Logsdon CD, McConkey DJ, Choi W (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69:5820–5828PubMedGoogle Scholar
  6. Balasubramanian P, Lang JC, Jatana KR, Miller B, Ozer E, Old M, Schuller DE, Agrawal A, Teknos TN, Summers TA Jr, Lustberg MB, Zborowski M, Chalmers JJ (2012) Multiparameter analysis, including EMT markers, on negatively enriched blood samples from patients with squamous cell carcinoma of the head and neck. PLoS ONE 7:e42048PubMedCentralPubMedGoogle Scholar
  7. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161PubMedGoogle Scholar
  8. Barrière G, Riouallon A, Renaudie J, Tartary M, Rigaud M (2012) Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer 12:114PubMedCentralPubMedGoogle Scholar
  9. Beasley GM, Riboh JC, Augustine CK, Zager JS, Hochwald SN, Grobmyer SR, Peterson B, Royal R, Ross MI, Tyler DS (2011) Prospective multicenter phase II trial of systemic ADH-1 in combination with melphalan via isolated limb infusion in patients with advanced extremity melanoma. J Clin Oncol 29:1210–1215PubMedGoogle Scholar
  10. Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L, Hannemann J, Fisch M, Pantel K, Weier HU, Bielawski KP, Brandt B (2010) BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 16:3340–3348PubMedCentralPubMedGoogle Scholar
  11. Bednarz-Knoll N, Alix-Panabières C, Pantel K (2012) Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 31:673–687PubMedGoogle Scholar
  12. Berezovskaya O, Schimmer AD, Glinskii AB, Pinilla C, Hoffman RM, Reed JC, Glinsky GV (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res 65:2378–2386PubMedGoogle Scholar
  13. Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, Noël A, Foidart JM, Birembaut P, Polette M, Gilles C (2012) A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 31:3741–3753PubMedGoogle Scholar
  14. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, Nilsson MB, Gudikote J, Tran H, Cardnell RJ, Bearss DJ, Warner SL, Foulks JM, Kanner SB, Gandhi V, Krett N, Rosen ST, Kim ES, Herbst RS, Blumenschein GR, Lee JJ, Lippman SM, Ang KK, Mills GB, Hong WK, Weinstein JN, Wistuba II, Coombes KR, Minna JD, Heymach JV (2013) An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3 K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 19:279–290PubMedCentralPubMedGoogle Scholar
  15. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564PubMedGoogle Scholar
  16. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278PubMedGoogle Scholar
  17. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179PubMedCentralPubMedGoogle Scholar
  18. Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5:19–28PubMedCentralPubMedGoogle Scholar
  19. Chui MH (2013) Insights into cancer metastasis from a clinicopathologic perspective: epithelial–mesenchymal transition is not a necessary step. Int J Cancer 132:1487–1495PubMedGoogle Scholar
  20. Chunhacha P, Sriuranpong V, Chanvorachote P (2013) Epithelial–mesenchymal transition mediates anoikis resistance and enhances invasion in pleural effusion-derived human lung cancer cells. Oncol Lett 5:1043–1047PubMedCentralPubMedGoogle Scholar
  21. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449PubMedGoogle Scholar
  22. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S, Kuperwasser C (2009) A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial–mesenchymal transition in basal-like breast cancer. Cancer Res 69:5364–5373PubMedCentralPubMedGoogle Scholar
  23. Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217PubMedCentralPubMedGoogle Scholar
  24. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA 107:21677–21682PubMedCentralPubMedGoogle Scholar
  25. Fehm T, Müller V, Aktas B, Janni W, Schneeweiss A, Stickeler E, Lattrich C, Löhberg CR, Solomayer E, Rack B, Riethdorf S, Klein C, Schindlbeck C, Brocker K, Kasimir-Bauer S, Wallwiener D, Pantel K (2010) HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat 124:403–412PubMedGoogle Scholar
  26. Garber K (2008) Epithelial-to-mesenchymal transition is important to metastasis, but questions remain. J Natl Cancer Inst 100(232–233):239Google Scholar
  27. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Res 70:6945–6956PubMedGoogle Scholar
  28. Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T, von Ahsen O (2012) Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:178PubMedCentralPubMedGoogle Scholar
  29. Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, Saltarelli R, Chiapparino E, Spremberg F, Cristofanilli M, Frati L, Aglianò AM, Gazzaniga P (2011a) Circulating tumor cells (CTCs) in metastatic breast cancer (MBC): prognosis, drug resistance and phenotypic characterization. Ann Oncol 22:86–92PubMedGoogle Scholar
  30. Gradilone A, Raimondi C, Nicolazzo C, Petracca A, Gandini O, Vincenzi B, Naso G, Aglianò AM, Cortesi E, Gazzaniga P (2011b) Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J Cell Mol Med 15:1066–1070PubMedGoogle Scholar
  31. Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665PubMedGoogle Scholar
  32. Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, Hood L, Yuan Y, Lin B (2012) Silencing SOX2 induced mesenchymal–epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS ONE 7:e41335PubMedCentralPubMedGoogle Scholar
  33. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, Barrow D, Nicholson RI (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118:290–301PubMedGoogle Scholar
  34. Hoshino H, Miyoshi N, Nagai K, Tomimaru Y, Nagano H, Sekimoto M, Doki Y, Mori M, Ishii H (2009) Epithelial mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem Biophys Res Commun 390:1061–1065PubMedGoogle Scholar
  35. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178:989–996PubMedCentralPubMedGoogle Scholar
  36. Howard EW, Leung SC, Yuen HF, Chua CW, Lee DT, Chan KW, Wang X, Wong YC (2008) Decreased adhesiveness, resistance to anoikis and suppression of GRP94 are integral to the survival of circulating tumor cells in prostate cancer. Clin Exp Metastasis 25:497–508PubMedGoogle Scholar
  37. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedGoogle Scholar
  38. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMedGoogle Scholar
  39. Kaiser J (2010) Medicine. Cancer's circulation problem. Science 327:1072–1074PubMedGoogle Scholar
  40. Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, Kikkawa F (2007) Chemoresistance to paclitaxel induces epithelial–mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 31:277–283PubMedGoogle Scholar
  41. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13:R59PubMedCentralPubMedGoogle Scholar
  42. Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428PubMedCentralPubMedGoogle Scholar
  43. Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23:573–581PubMedCentralPubMedGoogle Scholar
  44. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T (2012) Expression of stem cell and epithelial–mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 14:R15PubMedCentralPubMedGoogle Scholar
  45. Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, Board R, Clack G, Hughes A, Blackhall F, Valle JW, Dive C (2011) A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer 106:508–516PubMedCentralPubMedGoogle Scholar
  46. Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F, de Santis M, Zeillinger R, Hudec M, Dittrich C (2011) Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol 50:700–710PubMedGoogle Scholar
  47. Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5:R217–R222PubMedCentralPubMedGoogle Scholar
  48. Książkiewicz M, Markiewicz A, Zaczek AJ (2012) Epithelial–mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 79:195–208PubMedGoogle Scholar
  49. Larson CJ, Moreno JG, Pienta KJ, Gross S, Repollet M, O’hara SM, Russell T, Terstappen LW (2004) Apoptosis of circulating tumor cells in prostate cancer patients. Cytom A 62:46–53Google Scholar
  50. Lecharpentier A, Vielh P, Perez-Moreno P, Planchard D, Soria JC, Farace F (2011) Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 105:1338–1341PubMedCentralPubMedGoogle Scholar
  51. Ledford H (2011) Cancer theory faces doubts. Nature 472:273PubMedGoogle Scholar
  52. Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F, Chen ZQ, Liu XP, Xu ZD (2009) Twist1-mediated adriamycin-induced epithelial–mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res 15:2657–2665PubMedGoogle Scholar
  53. Li YM, Xu SC, Li J, Han KQ, Pi HF, Zheng L, Zuo GH, Huang XB, Li HY, Zhao HZ, Yu ZP, Zhou Z, Liang P (2013) Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell Death Dis 4:e831PubMedCentralPubMedGoogle Scholar
  54. Li J, Chen L, Zhang Y, Zhang XF, Liu HY, Sun B, Zhao LL, Ge NJ, Qian HY, Yang YY, Wu MC, Yin ZF (2014) Detection of circulating tumor cells in hepatocellular carcinoma using antibodies against asialoglycoprotein receptor, carbamoyl phosphate synthetase 1 and pan-cytokeratin. PLoS ONE 9:e96185PubMedCentralPubMedGoogle Scholar
  55. Lu S, Yu G, Zhu Y, Archer MC (2005) Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer 116:847–852PubMedGoogle Scholar
  56. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCentralPubMedGoogle Scholar
  57. Markou A, Strati A, Malamos N, Georgoulias V, Lianidou ES (2011) Molecular characterization of circulating tumor cells in breast cancer by a liquid bead array hybridization assay. Clin Chem 57:421–430PubMedGoogle Scholar
  58. Mego M, De Giorgi U, Dawood S, Wang X, Valero V, Andreopoulou E, Handy B, Ueno NT, Reuben JM, Cristofanilli M (2011) Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer 129:417–423PubMedGoogle Scholar
  59. Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN, Gao H, Jackson SA, Giordano A, Hortobagyi GN, Cristofanilli M, Lucci A, Reuben JM (2012) Expression of epithelial–mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Inter J Cancer 130:808–816Google Scholar
  60. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324PubMedGoogle Scholar
  61. Min AL, Choi JY, Woo HY, Kim JD, Kwon JH, Bae SH, Yoon SK, Shin SH, Chung YJ, Jung CK (2009) High expression of Snail mRNA in blood from hepatocellular carcinoma patients with extra-hepatic metastasis. Clin Exp Metastasis 26:759–767PubMedGoogle Scholar
  62. Mostert B, Kraan J, Sieuwerts AM, van der Spoel P, Bolt-de Vries J, Prager-van der Smissen WJ, Smid M, Timmermans AM, Martens JW, Gratama JW, Foekens JA, Sleijfer S (2012) CD49f-based selection of circulating tumor cells (CTCs) improves detection across breast cancer subtypes. Cancer Lett 319:49–55PubMedGoogle Scholar
  63. Nel I, Baba HA, Ertle J, Weber F, Sitek B, Eisenacher M, Meyer HE, Schlaak JF, Hoffmann AC (2013) Individual profiling of circulating tumor cell composition and therapeutic outcome in patients with hepatocellular carcinoma. Transl Oncol 6:420–428PubMedCentralPubMedGoogle Scholar
  64. Ocaña OH, Córcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Nieto MA (2012) Metastatic colonization requires the repression of the epithelial–mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724PubMedGoogle Scholar
  65. Ogunwobi OO, Puszyk W, Dong HJ, Liu C (2013) Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS ONE 8:e63765PubMedCentralPubMedGoogle Scholar
  66. Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW, Garcia-Blanco MA (2006) Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci USA 103:14116–14121PubMedCentralPubMedGoogle Scholar
  67. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654PubMedGoogle Scholar
  68. Ota I, Li XY, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci USA 106:20318–20323PubMedCentralPubMedGoogle Scholar
  69. Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, Stone RL, Lin YG, Jaladurgam P, Roh JW, Goodman BW, Merritt WM, Pircher TJ, Mikolajczyk SD, Nick AM, Celestino J, Eng C, Ellis LM, Deavers MT, Sood AK (2011) A novel platform for detection of CK + and CK − CTCs. Cancer Discov 1:580–586PubMedCentralPubMedGoogle Scholar
  70. Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117:2827–2839PubMedGoogle Scholar
  71. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428PubMedGoogle Scholar
  72. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273PubMedGoogle Scholar
  73. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S, Kurian AW, Ford JM, Stockdale FE, Quake SR, Pease RF, Mindrinos MN, Bhanot G, Dairkee SH, Davis RW, Jeffrey SS (2012) Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7:e33788PubMedCentralPubMedGoogle Scholar
  74. Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397PubMedCentralPubMedGoogle Scholar
  75. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E, Gazzaniga P (2011) Epithelial–mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130:449–455PubMedGoogle Scholar
  76. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148:349–361PubMedCentralPubMedGoogle Scholar
  77. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13:920–928PubMedGoogle Scholar
  78. Rossi E, Basso U, Celadin R, Zilio F, Pucciarelli S, Aieta M, Barile C, Sava T, Bonciarelli G, Tumolo S, Ghiotto C, Magro C, Jirillo A, Indraccolo S, Amadori A, Zamarchi R (2010) M30 neoepitope expression in epithelial cancer: quantification of apoptosis in circulating tumor cells by cell search analysis. Clin Cancer Res 16:5233–5243PubMedGoogle Scholar
  79. Saha B, Chaiwun B, Imam SS, Tsao-Wei DD, Groshen S, Naritoku WY, Imam SA (2007) Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Res 27:3903–3908PubMedGoogle Scholar
  80. Sandig M, Voura EB, Kalnins VI, Siu CH (1997) Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskelet 38:351–364Google Scholar
  81. Savagner P, Yamada KM, Thiery JP (1997) The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor–induced epithelial–mesenchymal transition. J Cell Biol 137:1403–1419PubMedCentralPubMedGoogle Scholar
  82. Schmidt H, De Angelis G, Bettendorf O, Eltze E, Semjonow A, Knichwitz G, Brandt B (2004) Frequent detection and immunophenotyping of prostate-derived cell clusters in the peripheral blood of prostate cancer patients. Int J Biol Markers 19:93–99PubMedGoogle Scholar
  83. Setoyama T, Natsugoe S, Okumura H, Matsumoto M, Uchikado Y, Aikou T (2007) Isolated tumour cells in blood and E-cadherin expression in oesophageal squamous cell cancer. Br J Surg 94:984–991PubMedGoogle Scholar
  84. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14:3629–3637PubMedGoogle Scholar
  85. Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ, Lin SB, Liou GY, Lee ML, Chen JJ, Hong TM, Yang SC, Su JL, Lee YC, Yang PC (2005) Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 11:8070–8078PubMedGoogle Scholar
  86. Smit MA, Geiger TR, Song JY, Gitelman I, Peeper DS (2009) A Twist-Snail axis critical for TrkB-induced epithelial–mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol 29:3722–3737PubMedCentralPubMedGoogle Scholar
  87. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332–2341PubMedCentralPubMedGoogle Scholar
  88. Strati A, Markou A, Parisi C, Politaki E, Mavroudis D, Georgoulias V, Lianidou E (2011) Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer 11:422PubMedCentralPubMedGoogle Scholar
  89. Sun B, Zhang X, Cheng X, Zhang Y, Chen L, Shi L, Liu Z, Qian H, Wu M, Yin Z (2013) Intratumoral hepatic stellate cells as a poor prognostic marker and a new treatment target for hepatocellular carcinoma. PLoS ONE 8:e80212PubMedCentralPubMedGoogle Scholar
  90. Swennenhuis JF, Tibbe AG, Levink R, Sipkema RC, Terstappen LW (2009) Characterization of circulating tumour cells by fluorescence in situ hybridization. Cytom A 75:520–527Google Scholar
  91. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226:380–393PubMedGoogle Scholar
  92. Thiery JP (2002) Epithelial–mesenchymal transitions in tumor progression. Nat Rev Cancer 2:442–454PubMedGoogle Scholar
  93. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142PubMedGoogle Scholar
  94. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, Iwata KK, Gibson N, Haley JD (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of nonsmall-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65:9455–9462PubMedGoogle Scholar
  95. Tsai JH, Yang J (2013) Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206PubMedCentralPubMedGoogle Scholar
  96. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736PubMedCentralPubMedGoogle Scholar
  97. Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, Hu GF (2008) Epithelial–mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68:10377–10386PubMedCentralPubMedGoogle Scholar
  98. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13:e178–e185PubMedGoogle Scholar
  99. Xie M, Zhang L, He CS, Xu F, Liu JL, Hu ZH, Zhao LP, Tian Y (2012) Activation of Notch-1 enhances epithelial–mesenchymal transition in gefitinib-acquired resistant lung cancer cells. J Cell Biochem 113:1501–1513PubMedGoogle Scholar
  100. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829PubMedGoogle Scholar
  101. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939PubMedGoogle Scholar
  102. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, Gray MJ, Cheng H, Hoff PM, Ellis LM (2006) Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12:4147–4153PubMedGoogle Scholar
  103. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L, Pham TQ, Soriano R, Stinson J, Seshagiri S, Modrusan Z, Lin CY, O’Neill V, Amler LC (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11:8686–8698PubMedGoogle Scholar
  104. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H, Iwatsuki M, Ota D, Ohkuma M, Iwaya T, Nishida N, Kogo R, Sudo T, Tanaka F, Shibata K, Toh H, Sato T, Barnard GF, Fukagawa T, Yamamoto S, Nakanishi H, Sasaki S, Miyano S, Watanabe T, Kuwano H, Mimori K, Pantel K, Mori M (2013) Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial–mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res 73:2059–2069PubMedGoogle Scholar
  105. Yu SR, Wei J, Qian XP, Liu BR (2009) Circulating tumor cells and individualized chemotherapy. Ai Zheng 28:1225–1232PubMedGoogle Scholar
  106. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584PubMedCentralPubMedGoogle Scholar
  107. Zhang Y, Li J, Cao L, Xu W, Yin Z (2012) Circulating tumor cells in hepatocellular carcinoma: detection techniques, clinical implications, and future perspectives. Semin Oncol 39:449–460PubMedGoogle Scholar
  108. Zhuo W, Wang Y, Zhuo X, Zhang Y, Ao X, Chen Z (2008a) Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer 62:8–14PubMedGoogle Scholar
  109. Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT (2008b) Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun 369:1098–1102PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huiying Liu
    • 1
  • Xiaofeng Zhang
    • 1
  • Jun Li
    • 1
  • Bin Sun
    • 1
  • Haihua Qian
    • 1
  • Zhengfeng Yin
    • 1
  1. 1.Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations