Advertisement

Comparative study of autophagy inhibition by 3MA and CQ on Cytarabine-induced death of leukaemia cells

  • Caroline Palmeira-dos-Santos
  • Gustavo J. S. Pereira
  • Christiano M. V. Barbosa
  • Aron Jurkiewicz
  • Soraya S. Smaili
  • Claudia BincolettoEmail author
Original Article – Cancer Research

Abstract

Background

As the molecular mechanisms of Cytarabine, one of the most important drugs used in the leukaemia’s treatment, are only partially understood and the role of autophagy on leukaemia development and treatment is only recently being investigated, in this study, by using Chloroquine (CQ) and 3-methyladenine (3MA) as autophagy inhibitors, we aim to evaluate the contribution of an autophagic mechanism to Cytarabine (AraC)-induced death of HL60 leukaemia cells.

Methods

Trypan blue exclusion and AnnexinV/PI assays were used to evaluate HL60 cell death under AraC treatment in the presence or absence of 3MA and CQ. Western blotting and immunofluorescence experiments were performed to show the involvement of apoptosis and autophagy protein expressions. Phenotypic characterization of HL60-treated cells was performed by using immunophenotyping. Clonogenic assays were applied to analyse clonal function of HL60-treated cells.

Results

We observed that although autophagy inhibition by 3MA, but not CQ, increased the death of HL60 AraC cells after 24 h of treatment, no significant differences between AraC and AraC + 3MA-treated groups were observed by using clonogenic assay. In addition, increased number of immature (CD34+/CD38Lin−/low) HL60 cells was found in AraC and AraC-3MA groups when compared with control untreated cells.

Conclusions

Although AraC anti-leukaemia effects could be potentiated by 3MA autophagy inhibition after 24 h of exposure, leukaemia cell resistance, the main causes of treatment failure, is also promoted by autophagy initial stage impairment by 3MA, denoting the complex role of autophagy in leukaemia cells’ response to chemotherapy.

Keywords

HL60 AraC 3-Methyladenine Chloroquine Autophagy Cell death Differentiation 

Notes

Acknowledgments

This study was supported by grants from Fundação do Amparo a Pesquisa do Estado de São Paulo (FAPESP—12/51215-4) and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) fellowship. The authors would like to thank Hanako Hirata, Maria de Lourdes L. dos Santos, Bruno Palmieri and Cıcero R. dos Santos for their technical support.

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Ablain J, Leiva M, Peres L, Fonsart J, Anthony E, de Thé H (2013) Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J Exp Med 210:647–653PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336PubMedCentralPubMedCrossRefGoogle Scholar
  3. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–665PubMedCentralPubMedCrossRefGoogle Scholar
  4. Arranz R, García-Noblejas A, Grande C, Cannata-Ortiz J, Sánchez JJ, García-Marco JA et al (2013) First line treatment with rituximab- Hyper-CVAD alternating with rituximab- Methotrexate- Cytarabine and followed by consolidation with 90Y-Ibritumomab-Tiuxetan in patients with mantle cell lymphoma. Results of a phase 2 pilot multicenter trial from the GELTAMO group. Haematologica 98:1563–1570PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bincoletto C, Bechara A, Pereira GJ, Santos CP, Antunes F, Peixoto da-Silva J et al (2013) Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies. Chem Biol Interact 206:279–288PubMedCrossRefGoogle Scholar
  6. Bonvillain RW, Painter RG, Adams DE, Viswanathan A, Lanson NA, Wang G (2010) RNA interference against CFTR affects HL60-derived neutrophil microbicidal function. Free Radic Biol Med 49:1872–1880PubMedCentralPubMedCrossRefGoogle Scholar
  7. Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040PubMedCentralPubMedCrossRefGoogle Scholar
  8. Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2006) Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2:238–240PubMedGoogle Scholar
  9. Capizzi RL, Yang JL, Cheng E, Bjornsson T, Sahasrabudhe D, Tan RS et al (1983) Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol 1:763–771PubMedGoogle Scholar
  10. Capizzi RL, Yang JL, Rathmell JP, White JC, Cheng E, Cheng YC et al (1985) Dose-related pharmacologic effects of high-dose ara-C and its self-potentiation. Semin Oncol 12:65–74PubMedGoogle Scholar
  11. Chee LC, Hendy J, Purton LE, McArthur GA (2013) ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells. Leukemia 27:1369–1380PubMedCrossRefGoogle Scholar
  12. Choi KD, Vodyanik M, Slukvin II (2011) Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 6:296–313PubMedCentralPubMedCrossRefGoogle Scholar
  13. Collins SJ, Gallo RC, Gallagher RE (1977) Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349PubMedCrossRefGoogle Scholar
  14. Drexler HG, Quentmeier H, MacLeod RA, Uphoff CC, Hu ZB (1995) Leukemia cell lines: in vitro models for the study of acute promyelocytic leukemia. Leuk Res 19:681–691PubMedCrossRefGoogle Scholar
  15. Ekiz HA, Can G, Baran Y (2012) Role of autophagy in the progression and suppression of leukemias. Crit Rev Oncol Hematol 81:275–285PubMedCrossRefGoogle Scholar
  16. Fu S, Consoli U, Hanania EG, Zu Z, Claxton DF, Andreeff M et al (1995) PML/RARalpha, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Clin Cancer Res 1:583–590PubMedGoogle Scholar
  17. Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333PubMedCrossRefGoogle Scholar
  18. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E et al (1994) Acute promyelocytic leukemia: from genetics to treatment. Blood 83:10–25PubMedGoogle Scholar
  19. Gunji H, Kharbanda S, Kufe D (1991) Induction of internucleosomal DNA fragmentation in human myeloid leukemia cells by 1-beta- D-arabinofuranosylcytosine. Cancer Res 51:741–743PubMedGoogle Scholar
  20. Han C, Sun B, Wang W, Cai W, Lou D, Sun Y et al (2011) Overexpression of microtubule-associated protein-1 light chain 3 is associated with melanoma metastasis and vasculogenic mimicry. Tohoku J Exp Med 223:243–251PubMedCrossRefGoogle Scholar
  21. Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 8:528–539PubMedCrossRefGoogle Scholar
  22. Kapuy O, Vinod PK, Mandl J, Bánhegyi G (2013) A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst 9:296–306PubMedCrossRefGoogle Scholar
  23. Koeffler HP (1983) Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood 62:709–721PubMedGoogle Scholar
  24. Lamba JK (2011) Pharmacogenomics of cytarabine in childhood leukemia. Pharmacogenomics 12:1629–1632PubMedCrossRefGoogle Scholar
  25. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRefGoogle Scholar
  26. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCentralPubMedCrossRefGoogle Scholar
  27. Liliemark JO, Plunkett W, Dixon DO (1985) Relationship of 1-beta-Darabinofuranosylcytosine in plasma to 1-beta-D-arabinofuranosylcytosine 59-triphosphate levels in leukemic cells during treatment with high-dose 1-beta-D-arabinofuranosylcytosine. Cancer Res 45:5952–5957PubMedGoogle Scholar
  28. Löwenberg B (2013) Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood 121:26–28PubMedCrossRefGoogle Scholar
  29. Lübbert M, Koeffler HP (1988) Myeloid cell lines: tools for studying differentiation of normal and abnormal hematopoietic cells. Blood Rev 2:121–133PubMedCrossRefGoogle Scholar
  30. Major PP, Egan EM, Beardsley GP, Minden MD, Kufe DW (1981) Lethality of human myeloblasts correlates with the incorporation of arabinofuranosylcytosine into DNA. Proc Natl Acad Sci USA 78:3235–3239PubMedCentralPubMedCrossRefGoogle Scholar
  31. Marone M, Scambia G, Bonanno G, Rutella S, de Ritis D, Guidi F et al (2002) Transforming growth factor-1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leukemia 16:94–105PubMedCrossRefGoogle Scholar
  32. Mehta K, McQueen T, Neamati N, Collins S, Andreeff M (1996) Activation of retinoid receptors RAR alpha and RXR alpha induces differentiation and apoptosis, respectively, in HL-60 cells. Cell Growth Differ 7:179–186PubMedGoogle Scholar
  33. Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93:3167–3215PubMedGoogle Scholar
  34. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  35. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCentralPubMedCrossRefGoogle Scholar
  36. Moon DO, Asami Y, Kim MO, Jang JH, Kim BY, Ahn JS et al (2013) Xestospongin C induces monocytic differentiation of HL60 cells through activation of the ERK pathway. Food Chem Toxicol 55:505–512PubMedCrossRefGoogle Scholar
  37. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 22:927–939CrossRefGoogle Scholar
  38. Pelosi E, Castelli G, Martin-Padura I, Bordoni V, Santoro S, Conigliaro A et al (2012) Human haemato-endothelial precursors: cord blood CD34 + cells produce haemogenic endothelium. PLoS ONE 7:e51109PubMedCentralPubMedCrossRefGoogle Scholar
  39. Plunkett W, Liliemark JO, Estey E, Keating MJ (1987) Saturation of ara-CTP accumulation during high-dose ara-C therapy: pharmacologic rationale for intermediate-dose ara-C. Semin Oncol 14:159–166PubMedGoogle Scholar
  40. Raza A, Gezer S, Anderson J, Lykins J, Bennett J, Browman G et al (1992) Relationship of [3H] Ara-C incorporation and response to therapy with high-dose Ara-C in AML patients: a Leukemia Intergroup study. Exp Hematol 20:1194–1200PubMedGoogle Scholar
  41. Rustum YM, Raymakers RA (2012) 1-Beta-arabinofuranosylcytosine in therapy of leukemia: preclinical and clinical overview. Pharmacol Ther 56:307–321CrossRefGoogle Scholar
  42. Saeki K, Yuo A, Okuma E, Yazaki Y, Susin SA, Kroemer G et al (2000) Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7:1263–1269PubMedCrossRefGoogle Scholar
  43. Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y et al (2010) Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10:370–375PubMedCentralPubMedCrossRefGoogle Scholar
  44. Smaili SS, Hsu YT, Sanders KM, Russell JT, Youle RJ (2001) Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ 8:909–920PubMedCrossRefGoogle Scholar
  45. Solomon VR, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 625:220–233PubMedCrossRefGoogle Scholar
  46. Toksoz D, Bunce CM, Stone PC, Michell RH, Brown G (1982) Variant cell lines from the human promyelocyte line HL60. Leuk Res 6:491–498PubMedCrossRefGoogle Scholar
  47. Vorbrodt A, Meo P, Rovera G (1979) Regulation of acid phosphatase activity in human promyelocytic leukemic cells induced to differentiate in culture. J Cell Biol 83:300–307PubMedCrossRefGoogle Scholar
  48. Wang WS, Tzeng CH, Chiou TJ, Liu JH, Hsieh RK, Yen CC et al (1997) High-dose cytarabine and mitoxantrone as salvage therapy for refractory non-Hodgkin’s lymphoma. Jpn J Clin Oncol 27:154–157PubMedCrossRefGoogle Scholar
  49. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292PubMedCentralPubMedCrossRefGoogle Scholar
  50. Yang YP, Liang ZQ, Gao B, Jia YL, Qin ZH (2008) Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells. Acta Pharmacol Sin 29:123–134PubMedCrossRefGoogle Scholar
  51. Zayed A, Couban S, Hayne O, Sparavalo N, Shawwa A, Sadek I et al (2007) Acute promyelocytic leukemia: a novel PML/RARalpha fusion that generates a frameshift in the RARalpha transcript and ATRA resistance. Leuk Lymphoma 48:489–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Caroline Palmeira-dos-Santos
    • 1
  • Gustavo J. S. Pereira
    • 1
  • Christiano M. V. Barbosa
    • 2
  • Aron Jurkiewicz
    • 1
  • Soraya S. Smaili
    • 1
  • Claudia Bincoletto
    • 1
    Email author
  1. 1.Departamento de Farmacologia, Escola Paulista de Medicina (EPM)Universidade Federal de São Paulo (UNIFESP)São PauloBrazil
  2. 2.Departamento de Bioquímica, Escola Paulista de Medicina (EPM)Universidade Federal de São Paulo (UNIFESP)São PauloBrazil

Personalised recommendations