Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 140, Issue 2, pp 291–301 | Cite as

Concomitant treatment with pertussis toxin plus temozolomide increases the survival of rats bearing intracerebral RG2 glioma

  • Roxana Magaña-Maldonado
  • Karen Manoutcharian
  • Norma Y. Hernández-Pedro
  • Edgar Rangel-López
  • Verónica Pérez-De la Cruz
  • César Rodríguez-Balderas
  • Julio Sotelo
  • Benjamín PinedaEmail author
Original Paper

Abstract

Purpose

Glioblastoma multiforme is the most frequent primary brain tumor, it has poor prognosis, and it remains refractory to current treatment. The success of temozolomide (TMZ) appears to be limited by the occurrence of chemoresistance. Recently, we report the use of pertussis toxin as adjuvant immunotherapy in a C6 glioma model; showing a decrease in tumoral size, it induced selective cell death in Treg cells, and it elicited less infiltration of tumoral macrophages. Here, we evaluated the cytotoxic effect of pertussis toxin in combination with TMZ for glioma treatment, both in vitro and in vivo RG2 glioma model.

Methods

We determined cell viability, cell cycle, apoptosis, and autophagy on treated RG2 cells through flow cytometry, immunofluorescence, and Western blot assays. Twenty-eight rats were divided in four groups (n = 7) for each treatment. After intracranial implantation of RG2 cells, animals were treated with TMZ (10 mg/Kg/200 μl of apple juice), PTx (2 μg/200 μl of saline solution), and TMZ + PTx. Animals without treatment were considered as control.

Results

We found an induction of apoptosis in around 20 % of RG2 cells, in both single treatments and in their combination. Also, we determined the presence of autophagy vesicles, without any modifications in the cell cycle in the TMZ – PTx-treated groups. The survival analyses showed an increase due to individual treatments; while in the group treated with the combination TMZ − PTx, this effect was enhanced.

Conclusion

We show that the concomitant use of pertussis toxin plus TMZ could represent an advantage to improve the glioma treatment.

Keywords

Pertussis toxin Glioblastoma multiforme RG2 glioma Survival Temozolomide 

Notes

Acknowledgments

Animals were kindly donated by Bioinvert Mexico City. This work was supported by the National Council of Science and Technology of Mexico (CONACyT, Grant 180851) and Instituto de Ciencia y Tecnología del Distrito Federal (PICSA 10-143).

Conflict of interest

None.

References

  1. Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S (2008) Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy 4(4):467–475PubMedGoogle Scholar
  2. Bruckener KE, el Baya A, Galla HJ, Schmidt MA (2003) Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J Cell Sci 116(Pt 9):1837–1846PubMedCrossRefGoogle Scholar
  3. Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl 19):10–14PubMedCrossRefGoogle Scholar
  4. Carmo A, Carvalheiro H, Crespo I, Nunes I, Lopes MC (2011) Effect of temozolomide on the U-118 glioma cell line. Oncol Lett 2(6):1165–1170. doi: 10.3892/ol.2011.406ol-02-06-1165 PubMedCentralPubMedGoogle Scholar
  5. Carracedo J, Ramirez R, Marchetti P, Pintado OC, Baixeras E, Martinez C, Kroemer G (1995) Pertussis toxin-sensitive GTP-binding proteins regulate activation-induced apoptotic cell death of human natural killer cells. Eur J Immunol 25(11):3094–3099. doi: 10.1002/eji.1830251116 PubMedCrossRefGoogle Scholar
  6. Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33(31):9045–9051PubMedCrossRefGoogle Scholar
  7. Deorah S, Lynch CF, Sibenaller ZA, Ryken TC (2006) Trends in brain cancer incidence and survival in the United States: surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg Focus 20(4):E1. doi: 10.3171/foc.2006.20.4.E1 PubMedCrossRefGoogle Scholar
  8. Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro Oncol 12(4):328–340. doi: 10.1093/neuonc/nop005 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Hirose Y, Berger MS, Pieper RO (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61(5):1957–1963PubMedGoogle Scholar
  10. Huang X, Bai HM, Chen L, Li B, Lu YC (2010) Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J Clin Neurosci 17(12):1515–1519. doi: 10.1016/j.jocn.2010.03.051 PubMedCrossRefGoogle Scholar
  11. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi: 10.1093/emboj/19.21.5720 PubMedCrossRefGoogle Scholar
  12. Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM (2003a) Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 99(6):1047–1052. doi: 10.3171/jns.2003.99.6.1047 PubMedCrossRefGoogle Scholar
  13. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003b) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63(9):2103–2108PubMedGoogle Scholar
  14. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11(4):448–457. doi: 10.1038/sj.cdd.44013594401359 PubMedCrossRefGoogle Scholar
  15. Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14(3):548–558. doi: 10.1038/sj.cdd.4402030 PubMedCrossRefGoogle Scholar
  16. Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342. doi: 10.1146/annurev.biochem.69.1.303 PubMedCrossRefGoogle Scholar
  17. Kobayashi N, Allen N, Clendenon NR, Ko LW (1980) An improved rat brain-tumor model. J Neurosurg 53(6):808–815. doi: 10.3171/jns.1980.53.6.0808 PubMedCrossRefGoogle Scholar
  18. Law BK (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56(1):47–60. doi: 10.1016/j.critrevonc.2004.09.009 PubMedCrossRefGoogle Scholar
  19. Locht C, Coutte L, Mielcarek N (2011) The ins and outs of pertussis toxin. FEBS J 278(23):4668–4682. doi: 10.1111/j.1742-4658.2011.08237.x PubMedCrossRefGoogle Scholar
  20. Lopez-Gonzalez MA, Sotelo J (2000) Brain tumors in Mexico: characteristics and prognosis of glioblastoma. Surg Neurol 53(2):157–162PubMedCrossRefGoogle Scholar
  21. Magaña R, Hernandez-Pedro N, Rangel E, Manoutcharian K, Pineda B, Sotelo J (2012) Pertussis: symptoms, prevention and treatment. Adv Med Biol 55:41–68Google Scholar
  22. Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61(12):1439–1454. doi: 10.1007/s00018-004-4012-4 PubMedCrossRefGoogle Scholar
  23. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22):3227–3239. doi: 10.1038/sj.onc.1210414 PubMedCrossRefGoogle Scholar
  24. Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30(2):429–436PubMedGoogle Scholar
  25. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668PubMedCrossRefGoogle Scholar
  26. Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114(Pt 20):3619–3629PubMedGoogle Scholar
  27. National Cancer Institute (2011) Central brain tumor registry of the United StatesGoogle Scholar
  28. Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603(2):113–128PubMedGoogle Scholar
  29. Orozco-Morales M, Sanchez-Garcia FJ, Guevara-Salazar P, Arrieta O, Hernandez-Pedro NY, Sanchez-Garcia A, Perez-Madrigal R, Rangel-Lopez E, Pineda B, Sotelo J (2012) Adjuvant immunotherapy of C6 glioma in rats with pertussis toxin. J Cancer Res Clin Oncol 138(1):23–33. doi: 10.1007/s00432-011-1069-y PubMedCrossRefGoogle Scholar
  30. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61(2):439–444PubMedGoogle Scholar
  31. Pietra G, Mortarini R, Parmiani G, Anichini A (2001) Phases of apoptosis of melanoma cells, but not of normal melanocytes, differently affect maturation of myeloid dendritic cells. Cancer Res 61(22):8218–8226PubMedGoogle Scholar
  32. Ryu CH, Yoon WS, Park KY, Kim SM, Lim JY, Woo JS, Jeong CH, Hou Y, Jeun SS (2012) Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J Biomed Biotechnol 2012:987495. doi: 10.1155/2012/987495 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sarrazy V, Vedrenne N, Billet F, Bordeau N, Lepreux S, Vital A, Jauberteau MO, Desmouliere A (2011) TLR4 signal transduction pathways neutralize the effect of Fas signals on glioblastoma cell proliferation and migration. Cancer Lett 311(2):195–202. doi: 10.1016/j.canlet.2011.07.018 PubMedCrossRefGoogle Scholar
  34. Sato Y, Kurose A, Ogawa A, Ogasawara K, Traganos F, Darzynkiewicz Z, Sawai T (2009) Diversity of DNA damage response of astrocytes and glioblastoma cell lines with various p53 status to treatment with etoposide and temozolomide. Cancer Biol Ther 8(5):452–457PubMedCentralPubMedCrossRefGoogle Scholar
  35. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi: 10.1056/NEJMoa043330 PubMedCrossRefGoogle Scholar
  36. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25(26):4127–4136. doi: 10.1200/JCO.2007.11.8554 PubMedCrossRefGoogle Scholar
  37. Tewari R, Choudhury SR, Ghosh S, Mehta VS, Sen E (2012) Involvement of TNFalpha-induced TLR4-NF-kappaB and TLR4-HIF-1alpha feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med (Berl) 90(1):67–80. doi: 10.1007/s00109-011-0807-6 CrossRefGoogle Scholar
  38. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13(1):1–9. doi: 10.1007/s10495-007-0154-9 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276(19):16484–16490. doi: 10.1074/jbc.M010384200M010384200 PubMedCrossRefGoogle Scholar
  40. Velasquez-Perez L, Jimenez-Marcial ME (2003) Clinical-histopathologic concordance of tumors of the nervous system at the Manuel Velasco Suarez National Institute of Neurology and Neurosurgery in Mexico City. Arch Pathol Lab Med 127(2):187–192PubMedGoogle Scholar
  41. Waltz P, Carchman EH, Young AC, Rao J, Rosengart MR, Kaczorowski D, Zuckerbraun BS (2011) Lipopolysaccharide induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7(3):315–320. doi: 10.4161/auto.7.3.14044 PubMedCrossRefGoogle Scholar
  42. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65(22):3640–3652. doi: 10.1007/s00018-008-8383-9 PubMedCrossRefGoogle Scholar
  43. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27(1):135–144. doi: 10.1016/j.immuni.2007.05.022 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Yu L, Wang L, Chen S (2012) Exogenous or endogenous Toll-like receptor ligands: which is the MVP in tumorigenesis? Cell Mol Life Sci 69(6):935–949. doi: 10.1007/s00018-011-0864-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roxana Magaña-Maldonado
    • 1
    • 2
  • Karen Manoutcharian
    • 2
  • Norma Y. Hernández-Pedro
    • 1
  • Edgar Rangel-López
    • 3
  • Verónica Pérez-De la Cruz
    • 4
  • César Rodríguez-Balderas
    • 5
  • Julio Sotelo
    • 1
  • Benjamín Pineda
    • 1
    Email author
  1. 1.Neuroimmunology and Neuro-Oncology UnitInstituto Nacional de Neurología y Neurocirugía (INNN)Mexico CityMexico
  2. 2.Immunology Departament, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  3. 3.Excitatory Amino Acids LaboratoryInstituto Nacional de Neurología y Neurocirugía (INNN)Mexico CityMexico
  4. 4.Neurochemistry UnitInstituto Nacional de Neurología y Neurocirugía (INNN)Mexico CityMexico
  5. 5.Animal Housing UnitInstituto Nacional de Neurología y Neurocirugía (INNN)Mexico CityMexico

Personalised recommendations