Journal of Cancer Research and Clinical Oncology

, Volume 140, Issue 1, pp 145–150 | Cite as

Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer

  • Ning Li
  • Jie Ma
  • Maria A. Guarnera
  • HongBin Fang
  • Ling Cai
  • Feng Jiang
Original Paper



MicroRNAs (miRNAs) play important roles in the initiation and progression of lung cancer. Measuring miRNA expression levels in sputum could provide a potential approach for the diagnosis of lung cancer. The emerging digital PCR is a straightforward technique for precise, direct, and absolute quantification of nucleic acids. The objective of the study was to investigate whether digital PCR could be used to quantify miRNAs in sputum for lung cancer diagnosis.


We first determined and compared dynamic ranges of digital PCR and conventional quantitative reverse transcriptase PCR (qRT-PCR) for miRNA quantification using RNA isolated from sputum of five healthy individuals. We then used digital PCR to quantify copy number of two lung cancer-associated miRNAs (miR-31 and miR-210) in 35 lung cancer patients and 40 cancer-free controls.


Copy number of the miRNAs measured by digital PCR displayed a linear response to input cDNA amount in a twofold dilution series over seven orders of magnitude. miRNA quantification determined by digital PCR assay was in good agreement with that obtained from qRT-PCR analysis in sputum. Furthermore, combined quantification of miR-31 and miR-210 copy number by using digital PCR in sputum of the cases and controls provided 65.71 % sensitivity and 85.00 % specificity for lung cancer diagnosis.


As digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number in sputum for lung cancer diagnosis.


Digital PCR miRNAs Sputum Diagnosis Lung cancer 



This work was supported in part by NCI R01CA161837, VA merit Award I01 CX000512, LUNGevity/Upstage Foundation Early Detection Award, and University of Maryland Cancer Epidemiology Alliance Seed Grant (F.J.).

Conflict of interest

The authors declare no conflict of interest.


  1. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409PubMedCrossRefGoogle Scholar
  2. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676PubMedCrossRefGoogle Scholar
  3. Anjuman N, Li N, Guarnera M, Stass SA, Jiang F (2013) Evaluation of lung flute in sputum samples for molecular analysis of lung cancer. Clin Transl Med 2:15PubMedCentralPubMedCrossRefGoogle Scholar
  4. Day E, Dear PH, McCaughan F (2013) Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 59:101–107PubMedCrossRefGoogle Scholar
  5. Dodd DW, Gagnon KT, Corey DR (2013) Digital quantitation of potential therapeutic target RNAs. Nucleic Acid Ther 23:188–194PubMedGoogle Scholar
  6. Galasso M, Sana ME, Volinia S (2010) Non-coding RNAs: a key to future personalized molecular therapy? Genome Med 2:12PubMedCentralPubMedCrossRefGoogle Scholar
  7. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51:15–36PubMedCrossRefGoogle Scholar
  8. Heredia NJ, Belgrader P, Wang S, Koehler R, Regan J, Cosman AM et al (2013) Droplet Digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods 59:S20–S23PubMedCrossRefGoogle Scholar
  9. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005Google Scholar
  11. Jiang F, Todd NW, Qiu Q, Liu Z, Katz RL, Stass SA (2009) Combined genetic analysis of sputum and computed tomography for noninvasive diagnosis of non-small-cell lung cancer. Lung Cancer 66:58–63PubMedCentralPubMedCrossRefGoogle Scholar
  12. Jiang F, Todd NW, Li R, Zhang H, Fang H, Stass SA (2010) A panel of sputum-based genomic marker for early detection of lung cancer. Cancer Prev Res (Phila) 3:1571–1578CrossRefGoogle Scholar
  13. Li R, Todd NW, Qiu Q, Fan T, Zhao RY, Rodgers WH et al (2007) Genetic deletions in sputum as diagnostic markers for early detection of stage I non-small cell lung cancer. Clin Cancer Res 13:482–487PubMedCrossRefGoogle Scholar
  14. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  15. Qiu Q, Todd NW, Li R, Peng H, Liu Z, Yfantis HG et al (2008) Magnetic enrichment of bronchial epithelial cells from sputum for lung cancer diagnosis. Cancer 114:275–283PubMedCrossRefGoogle Scholar
  16. Shen J, Jiang F (2012) Applications of microRNAs in the diagnosis and prognosis of lung cancer. Expert Opin Med Diagn 6:197–207PubMedCentralPubMedCrossRefGoogle Scholar
  17. Shen J, Liu Z, Todd NW, Zhang H, Liao J, Yu L et al (2011a) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 11:374PubMedCentralPubMedCrossRefGoogle Scholar
  18. Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y et al (2011b) Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 91:579–587PubMedCentralPubMedCrossRefGoogle Scholar
  19. Shen J, Stass SA, Jiang F (2013a) MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett 329:125–136PubMedCrossRefGoogle Scholar
  20. Shen J, Guarnera MA, Cai L, Fang H, Jiang F (2013b) Analysis of microRNAs in sputum improves CT for diagnosis of lung cancer. J Thorac Oncol (in press)Google Scholar
  21. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30PubMedCrossRefGoogle Scholar
  22. Thunnissen FB (2003) Sputum examination for early detection of lung cancer. J Clin Pathol 56:805–810PubMedCrossRefGoogle Scholar
  23. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci USA 96:9236–9241PubMedCrossRefGoogle Scholar
  24. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S et al (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40:e82PubMedCentralPubMedCrossRefGoogle Scholar
  25. Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H et al (2010) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67:170–176PubMedCentralPubMedCrossRefGoogle Scholar
  26. Xing L, Todd NW, Yu L, Fang H, Jiang F (2010) Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 23:1157–1164PubMedCrossRefGoogle Scholar
  27. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedCrossRefGoogle Scholar
  28. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z et al (2010) Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 127:2870–2878PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ning Li
    • 1
    • 3
  • Jie Ma
    • 1
  • Maria A. Guarnera
    • 1
  • HongBin Fang
    • 2
  • Ling Cai
    • 2
  • Feng Jiang
    • 1
  1. 1.Department of Pathology, The University of Maryland Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Division of Biostatistics, The University of Maryland Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of EducationShenyangChina

Personalised recommendations