Journal of Cancer Research and Clinical Oncology

, Volume 139, Issue 12, pp 1985–1993

Effect of the tyrosine kinase inhibitor nilotinib in patients with hypereosinophilic syndrome/chronic eosinophilic leukemia: analysis of the phase 2, open-label, single-arm A2101 study

  • Andreas Hochhaus
  • Philipp D. le Coutre
  • Hagop M. Kantarjian
  • Michele Baccarani
  • Philipp Erben
  • Andreas Reiter
  • Tracey McCulloch
  • Xiaolin Fan
  • Steven Novick
  • Francis J. Giles
Original Paper



Hypereosinophilic syndrome (HES) and chronic eosinophilic leukemia (CEL) are characterized by sustained overproduction of eosinophils and organ dysfunction. CEL involves the presence of clonal genetic markers, such as a fusion of FIP1-like 1 protein and platelet-derived growth factor receptor α (FIP1L1-PDGFRα, or F/P) or PDGFRα-activating mutations.


Sixteen patients with HES/CEL were enrolled in the phase 2 nilotinib registration trial (NCT00109707) and treated with nilotinib 400 mg twice daily. The median duration of treatment was 95 days (range 3–1,079).


Twelve patients had HES: 1 achieved a complete hematologic response (CHR), 3 achieved stable disease, 3 had progressive disease, and 5 were not evaluable for response. Four patients had CEL: 2 with the F/P fusion and 2 with PDGFRα-activating mutations. Both patients with an F/P fusion achieved a CHR; 1 also achieved a complete molecular response (CMR). Of the 2 patients with PDGFRα-activating mutations, 1 had stable disease and the other achieved CMR. At 24 months, overall survival in the HES group was 75.0 % (95 % CI 50.5–100.0) and no patients in the CEL group died. Median survival was not yet reached after a median follow-up of 32 months. The most common grade 3/4 hematologic laboratory abnormalities were lymphocytopenia (31.3 %) and neutropenia (25.0 %). The most common drug-related nonhematologic grade 3/4 adverse event was pruritus, which occurred in 2 patients (12.5 %).


Nilotinib 400 mg twice daily was effective in some patients with HES/CEL regardless of F/P mutation status, and the safety profile was consistent with other nilotinib studies.


Nilotinib Hypereosinophilic syndrome Chronic eosinophilic leukemia 


  1. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al (2007) The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 92(9):1173–1179CrossRefPubMedGoogle Scholar
  2. Baumgartner C, Gleixner KV, Peter B, Ferenc V, Gruze A, Remsing Rix LL et al (2008) Dasatinib inhibits the growth and survival of neoplastic human eosinophils (EOL-1) through targeting of FIP1L1-PDGFRalpha. Exp Hematol 36(10):1244–1253CrossRefPubMedGoogle Scholar
  3. Buchdunger E, Matter A, Druker BJ (2001) Bcr-abl inhibition as a modality of CML therapeutics. Biochim Biophys Acta 1551(1):M11–M18PubMedGoogle Scholar
  4. Butterfield JH (2009) Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRalpha-negative hypereosinophilic syndrome. Leuk Res 33(8):1127–1129CrossRefPubMedGoogle Scholar
  5. Butterfield JH, Weiler CR (2012) Treatment of hypereosinophilic syndromes—the first 100 years. Semin Hematol 49(2):182–191CrossRefPubMedGoogle Scholar
  6. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al (2003a) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348(13):1201–1214CrossRefPubMedGoogle Scholar
  7. Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al (2003b) PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 3(5):459–469CrossRefPubMedGoogle Scholar
  8. Cools J, Maertens C, Marynen P (2005) Resistance to tyrosine kinase inhibitors: calling on extra forces. Drug Resist Updat 8(3):119–129CrossRefPubMedGoogle Scholar
  9. Cortes JE, Hochhaus A, le Coutre PD, Rosti G, Pinilla-Ibarz J, Jabbour E et al (2011) Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib. Blood 117(21):5600–5606PubMedCentralCrossRefPubMedGoogle Scholar
  10. Crane MM, Chang CM, Kobayashi MG, Weller PF (2010) Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol 126(1):179–181CrossRefPubMedGoogle Scholar
  11. Cross NC, Reiter A (2008) Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119(4):199–206CrossRefPubMedGoogle Scholar
  12. Elling C, Erben P, Walz C, Frickenhaus M, Schemionek M, Stehling M et al (2011) Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 117(10):2935–2943CrossRefPubMedGoogle Scholar
  13. Giles FJ, Kantarjian HM, le Coutre PD, Baccarani M, Mahon FX, Blakesley RE et al (2012) Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia 26(5):959–962CrossRefPubMedGoogle Scholar
  14. Giles FJ, le Coutre PD, Pinilla-Ibarz J, Larson RA, Gattermann N, Ottmann OG et al (2013) Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia 27(1):107–112CrossRefPubMedGoogle Scholar
  15. Gotlib J (2012) World health organization-defined eosinophilic disorders: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 87(9):903–914CrossRefPubMedGoogle Scholar
  16. Gotlib J, Cools J (2008) Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22(11):1999–2010CrossRefPubMedGoogle Scholar
  17. Gotlib J, Cools J, Malone JM III, Schrier SL, Gilliland DG, Coutre SE (2004) The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 103(8):2879–2891CrossRefPubMedGoogle Scholar
  18. Gotlib J, DeAngelo DJ, George TI, Corless CL, Linder A, Langford C et al (2010) KIT inhibitor midostaurin exhibits a high rate of clinically meaningful and durable responses in advanced systemic mastocytosis: report of a fully accrued phase II trial. Blood 116(21): abstract 316Google Scholar
  19. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O et al (2012) KIT inhibitor midostaurin in patients with advanced systemic mastocytosis: Results of a planned interim analysis of the global CPKC412D2201 trial. Blood 120(Suppl): abstract 799Google Scholar
  20. Helbig G, Moskwa A, Hus M, Piszcz J, Swiderska A, Urbanowicz A et al (2010) Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript–results of Polish multicentre study. Hematol Oncol 28(2):93–97PubMedGoogle Scholar
  21. Helbig G, Soja A, Bartkowska-Chrobok A, Kyrcz-Krzemien S (2012) Chronic eosinophilic leukemia-not otherwise specified has a poor prognosis with unresponsiveness to conventional treatment and high risk of acute transformation. Am J Hematol 87(6):643–645CrossRefPubMedGoogle Scholar
  22. Ikezoe T, Togitani K, Tasaka T, Nishioka C, Yokoyama A (2010) Successful treatment of imatinib-resistant hypereosinophilic syndrome with nilotinib. Leuk Res 34(8):e200–e201CrossRefPubMedGoogle Scholar
  23. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354(24):2542–2551CrossRefPubMedGoogle Scholar
  24. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F et al (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110(10):3540–3546CrossRefPubMedGoogle Scholar
  25. Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB (2004) Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 103(8):2939–2941CrossRefPubMedGoogle Scholar
  26. le Coutre PD, Giles FJ, Hochhaus A, Apperley JF, Ossenkoppele GJ, Blakesley R et al (2012) Nilotinib in patients with Ph + chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia 26(6):1189–1194CrossRefPubMedGoogle Scholar
  27. Lierman E, Folens C, Stover EH, Mentens N, Van Miegroet H, Scheers W et al (2006) Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 108(4):1374–1376PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lierman E, Smits S, Cools J, Dewaele B, Debiec-Rychter M, Vandenberghe P (2012) Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia 26(7):1693–1695CrossRefPubMedGoogle Scholar
  29. Loules G, Kalala F, Giannakoulas N, Papadakis E, Matsouka P, Speletas M (2009) FIP1L1-PDGFRA molecular analysis in the differential diagnosis of eosinophilia. BMC Blood Disord 9:1PubMedCentralCrossRefPubMedGoogle Scholar
  30. Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M et al (2010) Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 18(19):6977–6986CrossRefPubMedGoogle Scholar
  31. Metzgeroth G, Walz C, Erben P, Popp H, Schmitt-Graeff A, Haferlach C et al (2008) Safety and efficacy of imatinib in chronic eosinophilic leukaemia and hypereosinophilic syndrome: a phase-II study. Br J Haematol 143(5):707–715CrossRefPubMedGoogle Scholar
  32. Metzgeroth G, Erben P, Martin H, Mousset S, Teichmann M, Walz C et al (2012) Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 26(1):162–164CrossRefPubMedGoogle Scholar
  33. National Cancer Institute (2006) Common terminology criteria for adverse events (CTCAE), version 3.0Google Scholar
  34. Novartis Pharmaceuticals Corporation (January 2012) Gleevec [package insert]Google Scholar
  35. Novartis Pharmaceuticals Corporation (May 2012) Tasigna [package insert]Google Scholar
  36. Pardanani A, Tefferi A (2004) Imatinib therapy for hypereosinophilic syndrome and eosinophilia-associated myeloproliferative disorders. Leuk Res 28(Suppl 1):S47–S52CrossRefPubMedGoogle Scholar
  37. Roche-Lestienne C, Lepers S, Soenen-Cornu V, Kahn JE, Lai JL, Hachulla E et al (2005) Molecular characterization of the idiopathic hypereosinophilic syndrome (HES) in 35 French patients with normal conventional cytogenetics. Leukemia 19(5):792–798CrossRefPubMedGoogle Scholar
  38. Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU et al (2008) Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 358(12):1215–1228CrossRefPubMedGoogle Scholar
  39. Roufosse F (2009) Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations. Haematologica 94(9):1188–1193PubMedCentralCrossRefPubMedGoogle Scholar
  40. Roufosse FE, Goldman M, Cogan E (2007) Hypereosinophilic syndromes. Orphanet J Rare Dis 2:37PubMedCentralCrossRefPubMedGoogle Scholar
  41. Soverini S, Iacobucci I, Baccarani M, Martinelli G (2007) Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica 92(4):437–439CrossRefPubMedGoogle Scholar
  42. Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J et al (2005) The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRβ and FIP1L1-PDGFRα in vitro and in vivo. Blood 106(9):3206–3213PubMedCentralCrossRefPubMedGoogle Scholar
  43. Tabouret E, Charbonnier A, Mozziconacci MJ, Ivanov V (2011) Low-dose nilotinib can maintain complete molecular remissions in FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Leuk Res 35(1):136CrossRefPubMedGoogle Scholar
  44. Valent P, Klion AD, Rosenwasser LJ, Arock M, Bochner BS, Butterfield JH et al (2012) ICON: eosinophil disorders. World Allergy Organ J 5(12):174–181PubMedCentralCrossRefPubMedGoogle Scholar
  45. Vandenberghe P, Wlodarska I, Michaux L, Zachee P, Boogaerts M, Vanstraelen D et al (2004) Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia 18(4):734–742CrossRefPubMedGoogle Scholar
  46. Verstovsek S (2007) New hematological indications for imatinib. Eur Oncol Dis 1(2):26–28Google Scholar
  47. Verstovsek S, Giles FJ, Quintas-Cardama A, Manshouri T, Huynh L, Manley P et al (2006) Activity of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, against human FIP1L1-PDGFR-alpha-expressing cells. Leuk Res 30(12):1499–1505CrossRefPubMedGoogle Scholar
  48. Verstovsek S, Tefferi A, Kantarjian H, Manshouri T, Luthra R, Pardanani A et al (2009) Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res 15(1):368–373CrossRefPubMedGoogle Scholar
  49. Wicklein D, Ramos Leal N, Salamon J, Thamer M, Herrmann H, Valent P et al (2012) Nilotinib and imatinib are comparably effective in reducing growth of human eosinophil leukemia cells in a newly established xenograft model. PLoS One 7(2):e30567PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Hochhaus
    • 1
  • Philipp D. le Coutre
    • 2
  • Hagop M. Kantarjian
    • 3
  • Michele Baccarani
    • 4
  • Philipp Erben
    • 5
  • Andreas Reiter
    • 5
  • Tracey McCulloch
    • 6
  • Xiaolin Fan
    • 6
  • Steven Novick
    • 6
  • Francis J. Giles
    • 7
  1. 1.Abteilung Hämatologie/OnkologieUniversitätsklinikum JenaJenaGermany
  2. 2.Charité-Universitätsmedizin BerlinBerlinGermany
  3. 3.University of Texas MD Anderson Cancer CenterHoustonUSA
  4. 4.University of BolognaBolognaItaly
  5. 5.Universitätsmedizin MannheimMannheimGermany
  6. 6.Novartis Pharmaceuticals CorporationEast HanoverUSA
  7. 7.Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoUSA

Personalised recommendations